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ABSTRACT

For the first time, the dye alizarin red S (ARS) was immobilized on indium tin

oxide (ITO) electrodes via a layer-by-layer technique (LbL). This was achieved

only when ARS was interspersed with the polymers agar (extracted from sea-

weed Gracilaria birdiae) and PAH [poly(allylamine hydrochloride)]. ARS alone

did not show electroactivity when adsorbed onto ITO. Single-walled carbon

nanotubes (functionalized with COOH, denoted CNTs) were used to increase

the electrochemical signal of the LbL system. Interactions at the molecular level

between the CNTs and other materials used in the construction of the films

accounted for a threefold increase in the current signal of ARS. The films were

developed as trilayer films of agar/PAH/ARS or agar(CNT)/PAH(CNT)/ARS

and characterized by differential pulse voltammetry (DPV) and UV–visible

spectroscopy and scanning electron microscopy. From the results, it was also

possible to calculate the energy diagram for both films. The results showed that

the films are promising for applications as electrochemical sensors. Accordingly,

the agar(CNT)/PAH(CNT)/ARS film was tested for the reduction of hydrogen

peroxide (H2O2). Under a constant potential of -0.5 V versus SCE (saturated

calomel electrode), the film exhibited a rapid response for the reduction of

peroxide (less than 5 s), and the current stabilized approximately at 30 s. The

limit of detection for the amperometric sensor was approximately

0.15 lmol L-1.
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Introduction

Nanotechnology is a multidisciplinary science that

has produced countless applications in many sectors,

such as industry, technology, and biotechnology, in

addition to presenting high-economic value [1, 2].

The uniqueness of nanotechnology is not limited to

the control and manipulation of individual molecules

or the development of nanostructures; it also offers

the possibility of developing new materials from the

combination of chemical and physical characteristics

of different materials, allowing new technological

applications for these materials [3].

Among the areas of interest involving nanotech-

nology, the study of thin films has been explored for

immobilizing various types of materials, enabling the

manipulation of matter in an organized way at the

atomic or molecular level [4]. Among the most com-

mon techniques used in the production of such films,

include casting, spin coating [5], dip coating [6],

Langmuir–Blodgett (LB) technique [7], and layer-by-

layer (LbL) techniques [8]. However, LB and LbL

techniques are the most used when the formation of

highly organized thin films that favor the appearance

of synergistic effects between different materials in

the film.

The first implementation of layer-by-layer tech-

nique is attributed to Iler [9] using microparticles.

The method was later revitalized by Decher [10], with

the discovery of its applicability to a wide range of

polyelectrolytes. The Decher proposal was mainly

based on the electrostatic interactions between spe-

cies of opposite charge; however, currently is known

about other types of interactions that may occur, such

as Van der Waals interactions, hydrogen bonding, or

even biospecific interactions [11, 12]. More recently,

the literature describes non-covalent interaction

between two or more species, producing highly

complex structures, which is known as constitutional

dynamic chemistry (CDC) [13].

The LbL technique is also known for producing

highly stable adsorbent layers. A wide variety of

materials can beused in theLbL technique [14], such as

proteins [15–17], enzymes [18–20], conductive poly-

mers [21, 22], polysaccharides [23– 25], and dyes, [26].

Dyes are examples of organic substances that have

considerable versatility in terms of applications,

ranging from dyeing of fabrics and food coloring to

other fields of modern technology such as sunlight-

absorbing cells, as well as electronic and optical

devices, including light emitting diodes (LED) as

photosensitizers used for controlling microbial pro-

liferation [27, 28].

Among the variety of available dyes, alizarin red S

(ARS) stands out. ARS is a soluble derivative of ali-

zarin (Alz) containing a non-reactive sulfonic group

that is responsible for improving the solubility of the

compound in aqueous media, Fig. 1 [29].

Initially, ARS was used as a colorimetric analytical

reagent for spectrophotometric reactions [30]. How-

ever, some studies proposed the use of ARS as a

surface modifier for solid electrodes for application

as electrochemical sensors [31]. Most of these sensors

have been produced using carbon electrodes [32–34],

glassy carbon [35, 36], carbon nanotubes [37, 38],

graphene [39], gold [40, 41], boron-doped diamond

[42], or pyrolytic graphite [43, 44]. However, there are

no reports in the literature on ARS adsorbed on ITO

electrodes. This fact provides an opportunity for a

characterization and study of the electrochemical,

spectroscopic, and morphological properties of this

compound.

Natural polysaccharides are another class of mate-

rials that have aroused interest for the production of

LbL films [45–47]. Agar stands out among these

polysaccharides because of its anticoagulant, antitu-

mor, antiviral, and anti-inflammatory properties [48]

that have resulted in applications in medicine, food,

cosmetics, biotechnology, textiles, pharmaceuticals,

and others [49–51]. The wide applicability of agar is

linked to its ability to form gels (gelling, viscosifying,

and/or emulsifying agents) and be non-toxic [52].

One of the nanotechnology’s interests is to find new

applications for these polysaccharides, such as their

use in the production of films for use as an active layer

for sensors and biosensors [53, 54].

Many types of sensors and biosensors have been

developed for the detection of hydrogen peroxide

(H2O2). Monitoring the levels of H2O2 is very impor-

tant because it is a powerful oxidant and oxygenator
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Figure 1 Structure of alizarin (Alz) and alizarin red S ARS.
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that is essential for human immune response [55].

H2O2 is also important for the metabolism of proteins,

carbohydrates, fats, vitamins, and minerals. In addi-

tion, H2O2 is involved in the regulation of blood sugar

and in the energy production of body cells [52]. For

these reasons, several studies aimed at the construc-

tion of sensors andbiosensors for the detection ofH2O2

have been conducted [54–57].

H2O2 also has an application in the textile industry

and in the composition of cleaning products, such as

detergent [54], as well as in the water purification

industry [58]. Several analytical methods have been

developed for the determination of H2O2, such as

chromatography, titration, chemiluminescence, spec-

trometry, and electrochemistry. Among these meth-

ods, electrochemical sensors have been shown to be

an excellent alternative because of their speed of

analysis, low cost, high sensitivity, and good selec-

tivity. These attributes have motivated the production

of various electrochemical sensors and biosensors for

the detection/reduction of H2O2 [55, 59–62].

Most electrochemical sensors developed for H2O2

detection use enzymes to reduce the peroxide [63–

68]. However, the use of enzymes for the develop-

ment of electrochemical sensors has some drawbacks,

including high cost and specific requirements under

different environmental conditions.

In this study, for the first time, ARS was immobi-

lized on ITO together with agar using LbL for the

development of a non-enzymatic sensor able to detect

H2O2. The union of the anionic layers of these

materials occurs through the use of PAH, a cationic

polymer widely used for the production of self-

assembled films. CNTs were also used to improve the

electrochemical response of ARS.

The objective of this study is the development and

characterization of LbL films based on agar, PAH,

and ARS immobilized on ITO electrodes. These films

were first characterized by differential pulse

voltammetry (DPV) and UV–visible spectroscopy

(UV–Vis). The films were then used for the reduction

of hydrogen peroxide.

Experimental procedure

Materials

ARS was purchased from Merck. PAH and CNTs

(functionalized with –COOH groups) were purchased

from Sigma-Aldrich. ARS, PAH, and CNT were used

as received. Agar was extracted from Gracilaria birdiae

collected in the Piauı́ coastline and subsequently

purified as described elsewhere [48].

Preparation of the solutions used
for the adsorption of the films

The ARS and agar solutions were prepared at a

concentration of 0.2 and 0.1 %, respectively. Ultra-

pure water was employed as the solvent for both

solutions. The PAH solution was prepared at 0.1 %

using 0.1 % acetic acid as the solvent.

Durability test of sensor

A 0.1 mol L-1 of H2O2 solution was used for the tests

for the reduction of hydrogen peroxide. In the dura-

bility test, the higher concentration of linear range

was considered (8.0 mmol L-1) and an applied

potential of -0.6 V for 5 min. After this time, the

electrode was washed in PBS 0.1 mol L-1 (pH 7.2)

and the voltammogram of DPV was recorded in the

supporting electrolyte in the absence of H2O2. Then,

the response of the film was compared before and

after contact with peroxide.

LbL film adsorption

For the formation of LbL films, CNTs were dispersed

separately in both agar and PAH solutions. Subse-

quently, a pre-cleaned ITO sample [69] was

immersed in the agar(CNT) solution for 5 min. Then,

the ITO/agar(CNT) system was dipped in pure water

to remove the unadsorbed material, and then dried

under N2 flow. In the next step, the ITO/agar(CNT)

electrode was dipped into the solution of PAH(CNT)

for 5 min, washed, and then dried with N2, thereby

forming a bilayer of ITO/agar(CNT)/PAH(CNT).

Then, the ITO/agar(CNT)/PAH(CNT) system was

immersed in the ARS solution for 5 min with wash-

ing and drying with N2 as before. At the end of this

process, a film containing the three-layer architecture

ITO/agar(CNT)/PAH(CNT)/ARS was obtained.

For comparative studies, films were also prepared

in the absence of CNTs, i.e., ITO/agar/PAH/ARS

films, and films in the absence of an electroactive

material, i.e., films of ITO/agar/PAH. We also tested

the influence of the sequence of deposition of mate-

rials of interest versus the electrochemical response.
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Characterization

The extracted polysaccharides were characterized by

infrared spectroscopy on KBr pellets using a Shimadzu

8300 FTIR spectrometer. The analysis of zeta potential

and molecular weight (MW) was performed by light

scattering on a Malvern Zetasizer Nano ZSModel 3600

using a 633 nm laser at a fixed scattering angle of 173�.
The sulfate content in carrageenan and agar was

obtained by inductively coupled plasma optical emis-

sion spectrometry (ICP-OES) (Spectro, model across).

For the electrochemical characterization of the LbL

films, a potentiostat/galvanostat Model 128 N

AUTOLAB PGSTAT and an electrochemical cell with

a 10.0-mL capacity with a lid for fitting three elec-

trodes. A saturated calomel electrode (SCE) was used

as the reference electrode and a platinum plate

(A = 2.0 cm2) was used as the auxiliary electrode. The

self-assembled film adsorbed on ITO (A = 0.32 cm2)

was used as the working electrode. All analyses were

performed using 0.1 M potassium phosphate buffer

(pH 7.2) as the electrolyte at room temperature (22 �C).
The formation of multilayers was monitored by

UV–visible spectroscopy (SHIMADZU Model UV-

1800). The self-assembled films were adsorbed on

common glass and a spectrum was measured after

each 2 trilayers adsorbed, for a total of 20 trilayers

and 10 spectra.

The morphological analysis of the films was con-

ducted by SEM (equipment FEI, model Quanta FEG

250).

Results and discussion

Characterization of polysaccharide

The characterization of agar by FTIR was performed

with the objective of identifying the sulfate groups

and 3,6-anhydrogalactose units that characterize the

polysaccharide structure. Furthermore, these groups

are responsible for the negative charges on the

polysaccharide [70].

In Fig. 2, the spectrum presents some characteristic

bands of polysaccharides, such as the C–O–C

stretching vibration of glycosidic bonds, which are

observed at 1158 and 1077 cm-1. Moreover, the

presence of the less intense band at 1250 cm-1 sug-

gests the existence of a small percentage of sulfate

groups in the polysaccharide structure, confirming its

negative charge.

The agar molecular weight obtained by dynamic

light scattering (DLS) was estimated at 1.4 9 103 kDa.

The sulfate percentage present in the polysaccharide

and the zeta potential of the solution used to prepare

the films were estimated at 2.73 % and -30.4 mV,

respectively.

Electrochemical characterization of LbL
films

Figure 3 shows the voltammograms obtained by

differential pulse voltammetry (DPV) for the films

prepared with a bi- or trilayer structure in the pres-

ence and absence of CNTs. The response of an

unmodified ITO electrode is also shown for com-

parison. An attempt was made to characterize these

films by cyclic voltammetry (CV), though the redox

processes had become more defined when obtained

by differential pulse voltammetry (Fig. S1).

Under the experimental conditions employed, ITO

did not show any redox response (see Fig. 3). When

the ITO was modified with the agar/PAH bilayer

film, no redox response was observed, as expected,

since neither agar nor PAH are electroactive materi-

als. For the case where CNTs were dispersed in agar

and PAH solutions producing the agar(CNT)/

PAH(CNT) bilayer film, a slight oxidation process at
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-0.45 V versus SCE was observed, which can be

attributed to the functionalized nanotubes present in

the bilayer film.

Also in Fig. 3, the response of trilayer films where

ARS was adsorbed on the outermost layer of the film

is shown (agar/PAH/ARS film). We also compared

the presence and absence of CNTs in this architec-

ture. For the agar/PAH/ARS film, there was

observed a well-defined oxidation process at -0.55 V

versus SCE, which is assigned to the p-quinone group

of ARS, as described in the literature [43–71].

Apparently, ARS has low adsorption or electroac-

tivity when adsorbed on ITO, which justifies its use

as a modifier of mainly carbon-based electrodes [32,

33]. When ARS was adsorbed on ITO, the response

was similar to the clean electrode (data not shown).

However, modification of the ITO electrode with the

agar/PAH film allowed ARS adsorption in this sys-

tem, but with a low current value (29.5 lA cm-2 at

-0.55 V). On the other hand, the introduction of

CNTs into the structure of the film improved the

electrochemical response of ARS, and the process

defined before at -0.55 V shifted to -0.59 V with a

current value of 84.5 lA cm-2, i.e., almost 3 times

greater than that currently obtained for the agar/

PAH/ARS film without CNTs (Fig. 3).

Several studies have reported interactions of ARS

with the p electrons present in structures of carbon,

such as glassy carbon [36, 37] and pyrolytic graphite

electrodes [19, 44] of the form that enhances the

electrochemical signal of this compound. Such inter-

actions can explain the increase of current caused by

the presence of CNTs in the film.

In our studies, the appearance of a new oxidation

process at -0.03 V for the agar(CNT)/PAH(CNT)/

ARS film was also observed. This process only occurs

when there is the presence of all materials inter-

spersed in the film. This effect can be explained as an

electrochemical process caused by a CDC interaction,

which has been observed by other authors [13] in

films containing single-walled carbon nanotubes

dispersed in the polymeric matrix of chitosan and

interspersed with cobalt phthalocyanine (Chit-

SWCNTs/CoTsPc). Luz et al. [13] observed that the

incorporation of SWCNTs also affected the mor-

phology of the film, and caused an increase in the

faradaic current, indicating a possible charge transfer

interaction between cobalt phthalocyanine and

SWCNTs.

Beyond agar, other polysaccharides, such as car-

rageenan (Hypnea musciformis) and cashew gum

(Anacardium occidentale), were tested as a replacement

for agar, as well as interspersed in hybrid films with

the materials of interest. However, the best results

were found using agar. The voltammograms for LbL

films where carrageenan and gum of cashew were

employed as agar replacements are shown in the

supplementary material (Fig. S2).

Evidently, natural polysaccharides are excellent

biomaterial alternatives for the development of thin

films for different applications. The literature reports

chitosan-based films for detecting heavy metals in

contaminated waters [72, 73], cellulose-based films

for detecting glucose [39] or chromium(VI) [74], and

seaweed polysaccharides for Cr(VI) detection [75],

and other films for the development of sensors based

on many types of natural polysaccharides [76].

ARS was maintained as the outermost layer of the

film, and the sequence between adsorption of

agar(CNT) and PAH(CNT) was reversed, in order to

investigate the effect of the adsorption sequence of

the film (Fig. 4). It can be seen that the deposition

sequence has a marked effect on current density

values. When ARS was adsorbed on PAH(CNT),

higher current density values were obtained, proba-

bly due to electrostatic interactions between the

polyelectrolytes. We believe that when ARS was

adsorbed on agar, the fact that both have anionic

character means that there were repulsive forces
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Figure 3 Differential pulse voltammograms obtained for bilayer

and trilayer films containing or not containing CNTs dispersed in

the solutions of interest. All measurements were carried out in

0.1 mol L-1 potassium phosphate (pH 7.2), Ei = -0.9 V,

Ef = 0.2 V, v = 25 mV s-1.
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between these polyelectrolytes, thereby disadvan-

taging the adsorption of ARS (Fig. 4). It is important

to note that regardless of the adsorption architecture,

the oxidation process of ARS occurred at -0.5 V,

whereas the process of oxidation observed at -0.03 V

was maintained in both cases.

Characterization of the films by UV–Vis
spectroscopy

UV–Vis spectroscopy allows us to follow the growth

of self-assembled films from the increase in the

absorbance value in each adsorption step, i.e., at each

layer adsorbed [77].

The agar/PAH/ARS and agar(CNT)/PAH(CNT)/

ARS films presented two absorption bands, one at

444 nm and the other at 556 nm, attributed, respec-

tively, to the n-d* transition of the protonated form

and deprotonated form of the hydroxyl group on
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Figure 4 Differential pulse voltammetry comparing the sequence

of deposition of trilayer films containing CNTs. All measurements

were carried out in 0.1 mol L-1 potassium phosphate (pH 7.2),

Ei = -0.9 V, Ef = 0.2 V, v = 25 mV s-1.

300 450 600 750 900 1050

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0 2 4 6 8 10 12 14 16 18 20 22
0.06

0.09

0.12

0.15

0.18

0.21

0.24

0.27

R = 0.992

agar/PAH/ARS
agar(CNT)/PAH(CNT)/ARSA

bs
or

ba
nc

e 
(a

. u
.) 

at
 4

44
 n

m

Number of trilayers

R = 0.993

(b)

(c)

300 450 600 750 900 1050
0.05

0.10

0.15

0.20

0.25

0.30

0.35

N
um

be
r o

f t
ril

ay
er

s

A
bs

or
ba

nc
e 

(a
.u

.)

Wavelength (nm)

 2
 4
 6
 8
 10
 12
 14
 16
 18
 20

A
bs

or
ba

nc
e 

(a
.u

.)

Wavelength (nm)

 2
 4
 6
 8
 10
 12
 14
 16
 18
 20

N
um

be
r o

f t
ril

ay
er

s

(a)

Figure 5 Absorption spectra obtained for every two trilayers adsorbed (n) for the films a agar/PAH/ARS and b agar(CNT)/PAH(CNT)/

ARS. The Inset shows the absorbance obtained for films at 444 nm as function of n.
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ARS, the only material present in the film that

absorbs in the UV–Vis region [78].

Figure 5 shows the spectra obtained for films of

interest in the presence and absence of CNTs. Fig-

ure 5a shows the spectra obtained at every two tri-

layers adsorbed on the agar/PAH/ARS film, while in

Fig. 5b the same is shown for the agar(CNT)/

PAH(CNT)/ARS system. Figure 5c shows the growth

curve of these films, which was constructed from the

relationship between the number of trilayers adsor-

bed and the absorbance for both films at 444 nm.

From Fig. 5c, it can be seen that the nanotubes do

not influence considerably the absorbance of the film

until the eighth trilayer. Above the eighth trilayer

adsorbed, there is a decrease in the absorbance of the

film containing the nanotubes, probably due to the

increased opacity of the film caused by the presence

of the CNTs.

It is noteworthy that the agar/PAH/ARS film

showed linear growth, with a correlation coefficient

(R) of 0.993, while the agar(CNT)/PAH(CNT)/ARS

film presented sigmoidal behavior (R = 0.992). This

indicates that the thickness of these films can be

controlled by the number of adsorbed trilayers

through different curve-fitting equations. For the

agar/PAH/ARS film, we concluded also that it is a

self-regulating system, since it is very close the

amounts of material adsorbed by adsorption step

[77].

The results obtained by UV–Vis spectroscopy

suggest that CNTs play a more important role in

relation to the ARS electroactivity and consecutively

of the film than in adsorptive or spectroscopic prop-

erties of these films. Accordingly, we believe that the

synergy among the CNTs, ARS, and other materials

present in the film is responsible for the current

increase observed for ARS in Fig. 2, and not simply

an increase in the surface area of the film promoted

by CNTs.

Construction of the energy diagram

The energy diagrams of LbL films were constructed

from the experimental data obtained by both UV–Vis

and DPV. The value of the initial wavelength (k0) was

obtained from the intersection of the curves of the

UV–Vis absorption spectra, Fig. 6a. The potential of

the initial oxidation value (E0
ox) was obtained from

the linear intersection of the growth of the current

oxidation and the background of the differential

pulse voltammogram (Fig. 6b) [79].

The value of E0
ox was substituted in Eq. 1, to obtain

the oxidation potential (Eox), considering Evac equals

zero, as determined by the literature [80, 81].

Eox ¼ E0
ox þ EESC � E0

ox þ Evac þ 4:7: ð1Þ

The value for k0, Fig. 6a, was used to calculate the

energy of the electronic transition (Eg), using Eq. 2,

where h is Planck’s constant and c is the speed of

light.

Eg ¼
hc

k0
ð2Þ
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The ionization potential (IP) was calculated

according to Eq. 3, where e is the electron charge.

IP ¼ eEox ð3Þ

The electron affinity (EA) was calculated by Eq. 4.

EA ¼ IP� Eg ð4Þ

Figure 6c shows the energy diagram obtained for

the agar/HAP/ARS and agar(CNT)/PAH(CNT)/

ARS films. It can be observed that the presence of

CNTs improved the conductivity of the film, since

they reduced the energy required for the electrons to

reach the vacuum level. The electron affinity of ARS

with the electrode was increased in the presence of

CNTs.

The higher value obtained for the HOMO energy,

shown in Fig. 6c, is similar to previously reported

results for phthalocyanines [81]. Phthalocyanines are

materials used in the construction of optical-elec-

tronic devices used in photodynamic therapy, and

especially for the development of electrochemical

sensors and biosensors. Accordingly, we believe that

the films produced here are promising for electronic

applications, thus opening prospects for future

studies in this area. Moreover, in this study, we also

evaluated the potential of the film as a platform for an

electrochemical sensor.

SEM morphological analysis

Figure 7 shows the SEM images obtained from the

morphological study of the substrate (Fig. 7a) and

substrate modified by the LbL films in the presence

or absence of carbon nanotubes (CNT), Fig. 7b and c,

respectively. It was observed that when the nan-

otubes were dispersed in the solution of agar and

PAH (agar(CNT)/PAH(CNT)/ARS film, Fig. 7b),

there was the formation of aggregates with granular

form, Fig. 7b. On the other hand, when CNTs were

incorporated on the film structure, a more uniform

distribution of ARS was promoted, which can be

easily observed by comparing Fig. 7b and c. That is,

in Fig. 7c the agar/PAH/ARS film (without CNT)

showed small areas with medium gray tones, indi-

cating that there is a little amount of ARS distributed

on the film, when in the absence of CNTs. These

results corroborate with the low current observed for

this film in the study shown in Fig. 3. Methods that

seek a better dispersion for CNTs can optimize the

system proposed here.

Detection tests for hydrogen peroxide

Cyclic voltammetry experiments were carried out in

which we examined the response of the agar(CNT)/

Figure 7 SEM images obtained for a ITO and films of

b agar(CNT)/PAH(CNT)/ARS and e agar/PAH/ARS. In b yellow

arrows indicate the nanotube aggregates. In c yellow arrows

indicate areas of the substrate that were not covered by the film

and the red arrows indicate the distribution of the ARS (medium

gray tones).
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PAH(CNT)/ARS in the absence and in the presence

of a concentration gradient of H2O2 (Fig. 8), to eval-

uate the potential of the film for reduction of

hydrogen peroxide.

It was observed in Fig. 8 that with increasing con-

centrations of H2O2, there was an increase in reduc-

tion current from -0.25 V, which increased as the

applied potential shifted to more negative values.

Next, the technique of chronoamperometry was

used to evaluate the potential of the developed film

for the reduction of H2O2 under a constant potential.

The amperometric measurements were performed to

assess the sensitivity, linearity, and time of response

of the electrode in the presence of H2O2. Various

polarization potentials were tested and the most

significant results are shown in Fig. 9. The

agar(CNT)/PAH(CNT)/ARS film showed better

performance when the applied potential was -0.5 V

versus SCE, exhibiting a response of less than 5 s, and

a stabilizing current of up to 30 s (Fig. 9).

In Fig. 9, it can be observed that, with successive

additions of H2O2 in the electrochemical cell, there is

an increase in the current reduction for hydrogen

peroxide, with two distinct regions of linearity. In

Fig. 9a, the amperometric response for concentra-

tions from 0.05 to 0.4 mmol L-1 is shown, while in

Fig. 9b the amperometric response for concentra-

tions between 3.0 and 8.0 mmol L-1 is shown. The
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PAH(CNT)/ARS film at different concentrations of H2O2. The

measurements were performed in 0.1 mol L-1 phosphate buffer
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two inclinations obtained in Fig. 9c relate to the two

regions of linearity observed, leading us to say that

the film is more sensitive to low concentrations of

H2O2. The detection and quantification limit were

estimated at, respectively, 0.15 and 0.21 lmol L-1.

Table 1 shows the LD found for the H2O2 in this

study compared to other available in the literature.

It is important to mention that the literature already

reports an electrochemical sensor for hydrogen

peroxide based on ARS and CNTs (Han et al. 2013).

However, in this new proposal, substantial

improvements in comparison with the sensor pub-

lished are shown. The LD found in this study was 10

times lower than that reported in the study of Han

et al. [56], which in this case was 1.2 mmol L-1.

Additionally, the sensor disclosed herein showed

linear response at wider concentration range in

comparison with the literature (0.03 a

5.0 mmol L-1).

Additionally, the stability of sensor after successive

contacts with the H2O2 was evaluated. In these

studies, it was observed that the response of

agar(CNT)/PAH(CNT)/ARS film in the absence of

H2O2 was similar to the response of this same film

after successive contacts of the electrode with per-

oxide, i.e., the profile and current density observed in

the voltammograms recorded for the films not

changed considerably after contact with peroxide,

indicating the great potential of this system for the

proposed application (see Fig. S3).

The results of this study create a foundation for the

implementation of this new material as an electro-

chemical sensor for H2O2. However, new studies

should be carried out to evaluate the effect of

Table 1 LD found for the H2O2 in this study compared to other available in the literature

Non-enzymatic electrochemical sensors for the detection of

hydrogen peroxide

Limit of

detection/LD (lM)

References

Agar(CNT)/PAH(CNT)/ARS LbL film 0.15 This study

Electrochemical sensor for hydrogen peroxide based on ARS and

CNTs

1.2 Han et al. [56]

Vertical NiO nanosheets supported on the graphite sheet 0.4 Liu et al. [82]

Fenton-type reaction on poly(azure A)-chitosan/Cu modified

electrode

0.7 Liu et al. [83]

CuO flower-like nanostructured electrode formed by chemical

oxidation of copper foil under hydrothermal conditions

0.167 Song et al. [84]

Copper on porous silicon (Cu/PSi) nanocomposite poder

synthesized by electrodeless deposition of copper nanoparticles

on the etched PSi powder in a solution containing hydrofluoric

acid and CuSO4

0.27 Ensafi et al. [85]

Non-enzymatic amperometric detection of hydrogen peroxide

using grass-like copper oxide nanostructures calcined in nitrogen

atmosphere

3.26 Gao et al. [86]

Au electrode modified with polyaniline, multiwalled carbon

nanotubes and gold nanoparticles

0.3 Narang et al. [87]

CuS nanoparticles on surface of a glassy carbon electrode (GCE)

by drop coating techniques

1.1 Dutta et al. [88]

Nanoporous gold (NPG) fabricated by dealloying Au–Ag film 3.26 Meng et al. [89]

Glassy carbon electrode modified with an MWCNT/polyaniline

composite film and platinum nanoparticles

2.0 Zhong et al. [90]

Glassy carbon electrode modified with single-walled carbon

nanotubes–manganese complex modified

0.2 Salimi et al. [91]

Graphene wrapped Cu2O nanocubes: non-enzymatic

electrochemical sensors for the detection of glucose and

hydrogen peroxide with enhanced stability

3.3 Liu et al. [92]
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interferents in the analytical response of this sensor,

as well as validation of the method for its use in

peroxide detection in real samples. Also, because it is

a new system, different analytes should be tested

aiming to expand the applicability of this material,

which is currently under study by our group.

Conclusions

For the first time, ARS was immobilized by LbL

technique on ITO electrodes. ARS showed electroac-

tivity adsorbed on ITO only when it had been pre-

viously modified by agar and PAH. Current values,

almost 3 times higher, were obtained when the CNTs

were interspersed on the film, thus leading to an

improvement in the charge transfer process between

ARS and the electrode, probably due to a mechanism

of constitutional dynamic chemistry present in the

proposed system, and also due to the interactions

between the p electrons of ARS and CNTs.

The energy diagrams obtained for the agar/PAH/

ARS and agar(CNT)/PAH(CNT)/ARS films showed

that the presence of CNTs in the film structure

improves the electron affinity between ARS and the

ITO electrode. Both films are promising for electronic

applications as electrochemical sensors.

The growth curves of the agar/PAH/ARS and

agar(CNT)/PAH(CNT)/ARS films obtained by UV–

Vis spectroscopy indicated that the nanotubes do not

influence significantly the adsorption of ARS up to

the eighth trilayer, confirming that the increase in the

current observed for ARS was due to the improved

transfer of charges promoted by the synergism of the

materials present in the film. Morphological analysis

performed by SEM showed that although there is the

aggregation of CNTs, they promote a more uniform

distribution of the ARS in the film.

The agar(CNT)/PAH(CNT)/ARS film exhibited

good catalytic response to the reduction of H2O2,

reaching a detection limit in the order of

0.21 lmol L-1.
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