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The aim of this study was to investigate intrinsic antimicrobial activity of three monoterpenes nerol,
dimethyl octanol and estragole, against bacteria and yeast strains, as well as, investigate if these com-
pounds are able to inhibit the NorA efflux pump related to fluoroquinolone resistance in Staphylococcus
aureus. Minimal inhibitory concentrations (MICs) of the monoterpenes against Staphylococcus aureus,
Escherichia coli and Candida albicans strains were determined by micro-dilution assay. MICs of the
norfloxacin against a S. aureus strain overexpressing the NorA protein were determined in the absence or
in the presence of the monoterpenes at subinhibitory concentrations, aiming to verify the ability of this
compounds act as efflux pump inhibitors. The monoterpenes were inactive against S. aureus however the
nerol was active against E. coli and C. albicans. The addition of the compounds to growth media at sub-
inhibitory concentrations enhanced the activity of norfloxacin against S. aureus SA1199-B. This result
shows that bioactives tested, especially the nerol, are able to inhibit NorA efflux pump indicating a
potential use as adjuvants of norfloxacin for therapy of infections caused by multi-drug resistant S. aureus

strains.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The prevalence of infectious diseases caused by multi-drug
resistant microorganisms has increased dramatically worldwide
[1,2] despite of the wide range of available antimicrobial agents.
Infections caused by methicillin resistant Staphylococcus aureus
(MRSA) and Escherichia coli resistant to cephalosporin of third-
generation and fluoroquinolones are commonly acquired in hos-
pitals and communities of all countries of the world [3,4]. Fluo-
roquinolones have been proposed as a possible alternative to
vancomycin therapy against methicillin resistance S. aureus (MRSA)
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infections [5], however resistance to these antibacterial agents has
become common and widespread [6—8].

Fluoroquinolones are able to binding to the complexes formed
between DNA and DNA gyrase or topoisomerase IV, inactivating
these bacterial enzymes, leading to a rapid inhibition of DNA
replication [9] Bacterial resistance to fluoroquinolones occur due to
mutation in one or more genes encoding these target enzymes or
by expression of multidrug efflux pumps capable of actively
removing fluoroquinolones from bacterial cell [10—12], as NorA
efflux protein overexpressed by SA1199-B strain tested in the pre-
sent study [13,14].

The knowledge about resistance mediated by efflux pumps has
motivated the search for efflux pump inhibitor (EPI) compounds
which could recover the efficacy of current antibiotics [15]. In this
sense, synthetic or natural products from vegetable origin have
been investigated for its ability to act how EPI [16—20].

Essential oils from plants are rich in bioactive compounds, such
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as terpenes and terpenoids, which have showed promising results
as potential therapeutic agents [21—23]. Monoterpenes, the main
constituents of essential oils [24], have been reported for their
antifungal, anti-aflatoxin and antioxidant activities [25]. The aim of
the present study was to evaluate if monoterpenes nerol, estragole
and dymethil-octanol, are potential intrinsic antimicrobial agents
and/or efflux pump inhibitors of the NorA multi-drug transporter of
S. aureus.

2. Materials and methods
2.1. Strains and drugs

The intrinsic antimicrobial activity of the monoterpenes was
tested against Gram-positive (S. aureus ATCC 25923, SA1199,
SA1199-B and SA10), Gram-negative (E. coli ATCC 25922) or yeast
(Candida albicans NEWPO031) strains. The inhibitory effect on NorA
activity was performed with S. aureus SA1199-B strain which over-
express the norA gene encoding NorA. NorA can efflux hydrophilic
fluoroquinolones and other drugs such as DNA-intercalating dyes
[13]. Bacterial strains were maintained on Brain Heart Infusion Agar
(BHIA, Himedia, India) slant at 4 °C, and prior to assay the cells were
grown overnight at 37 °C in Brain Heart Infusion (BHI, Himedia,
India). The yeast strain was maintained on Sabouraud Dextrose
Agar (SDA, Himedia, India) slant at 4 °C and prior to assay the cells
were grown for 24 h at 37 °C in Sabouraud Dextrose Broth (SDB,
Himedia, India).

Oxygenated monoterpenes 3,7-dimethyl-octan-1-ol, (2Z)-3,7-
dimethylocta-2,6-dien-1-ol (nerol), and 1-methoxy-4-(prop-2-en-
1-yl)benzene (estragole), norfloxacin and ethidium bromide were
obtained from Sigma Chemical Corp., St. Louis. Antibiotics and
ethidium bromide were dissolved in sterile water.

2.2. Log P estimation

Estimation of the Log P was performed using the MarvinSketch
6.2.2 (Chemaxon), by the Phys method. Log P has been calculated
for the uncharged molecule due to the typical range of pKa for ar-
omatic hydroxyl is 8.0—10.0.

2.3. Evaluation of the intrinsic antimicrobial activity

Stock solutions of nerol, 3,7-Dimethyl-1-octanol and estragole
were prepared by dissolving 10000 ug of each monoterpene in 1 mL
of dimethyl sulfoxide, thus starting with an initial concentration of
10000 pg/mL. This stock solution was then diluted in sterile dis-
tillated water to obtain the test solution (1024 pg/mL). Minimal
inhibitory concentrations (MICs) of monoterpenes were deter-
mined by micro-dilution assay in BHI broth 10% with bacterial
suspensions of 10° CFU/mL and monoterpene solutions ranging
from 8 to 512 pg/mL. Microtiter plates were incubated at 37 °C for
24 h, then 20 pL of resazurin (0.01% w/v in sterile distilled water)
was added to each well to detect bacterial growth by color change
from blue to pink. MICs were defined as the lowest concentration at
which no bacterial growth was observed.

Antifungal assays were performed by micro-dilution method in
SDB double concentrated with yeast suspension of 10° CFU/mL and
monoterpene solutions ranging from 8 to 512 ug/mL. Microtiter
plates were incubated at 37 °C for 24 h. The MIC was defined as the
lower concentration of the monoterpene solution able to inhibit the
visible growth. Inhibition of the fungal growth was confirmed
transferring an aliquot from each well of the MIC test microtiter
plate to a Petri dish containing SDA and checking cell viability after
incubation at 37° for 24 h.

2.4. Evaluation of the NorA efflux pump inhibition

For evaluation of the monoterpenes as modulators of fluo-
roquinolone resistance, MICs of the norfloxacin for SA1199-B strain
were determined in the presence or absence of each compound at
sub-inhibitory concentrations (1/8 MIC, 1/4 MIC or 1/2 MIC). Anti-
biotic or ethidium bromide (EtBr) concentrations ranged from 0.125
to 128 ug/mL. Microtiter plates were incubated at 37 °C for 24 h and
readings were performed with resazurin as previously described.

2.5. Statistical analysis

All experiments were performed in triplicate and results were
normalized by calculation of geometric average values. Error de-
viation and standard deviation of the geometric average were
revealed. Differences between treatment with antibiotics alone or
associated with monoterpenes were examined using one-way
analysis of variance (ANOVA). Differences mentioned above were
analyzed by Bonferroni posttest and p < 0.05 were considered
statistically significant.

3. Results

Chemical structures and Log P values of the oxygenated
monoterpenes tested are presented in Table 1. MICs found to every
compound against S. aureus, E. coli and C. albicans strains are pre-
sented in Table 2. Monoterpenes tested did not present activity
against all S. aureus strains [26]. On the other hand, the nerol
showed a weak inhibitory activity (512 pg/mL) against E. coli e
C. albicans strains.

Addition of oxygenated monoterpenes to the growth medium at
sub-inhibitory concentrations caused a decrease in the MIC for
norfloxacin against SA1199-B (Figs. 1-3). The nerol and 3,7-
dimethyl-octan-1-ol enhanced the antibiotic activity of nor-
floxacin against SA1199-B in a concentration-dependent manner.
On the other hand, a modulatory effect was also verified when
antibiotics were replaced by ethidium bromide, a well-known
substrate of NorA protein (Fig. 4).

4. Discussion

Essential oils have been proposed as a natural source of com-
pounds with antibacterial activity against multi-drug resistant
bacteria, as well as, a natural source of compounds able to inhibit
bacterial resistance mechanisms [27—29]. In this work we investi-
gate the intrinsic antibacterial activity of three oxygenated mono-
terpenes and their potential as EPI of the NorA efflux pump which is
related with resistance to hydrophobic fluoroquinolones in
S. aureus SA1199-B.

In respect to intrinsic antimicrobial activity, only nerol was
active against E. coli ATCC 25923 and Candida albicans NEWP031.

z;lzlriilcal structure and Log P estimation for oxygenated monoterpenes tested.
Monoterpene Structure Log P
3,7-dimethyl-octanol CH, CHj 3,12
(22)-3,7-dimethyl-2,6-octadien-1-ol (nerol) HsC_~_OH 3,02
HiCo 7

1-allyl-4-methoxybenzene (estragole) /@MCHZ 2,89
OCH3
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Table 2

Minimal inhibitory concentrations (MIC) showed by Nerol, 3,7-Dimethyl-1-octanol
and Estragole against S. aureus strains (geometrical means of three simultaneous
tests).

CEPAS MIC (pg/mL) Estragole
Nerol Dimethyl octanol

S. aureus ATCC 25923 >1024 >1024 >1024
S. aureus SA1199 >1024 >1024 >1024
S. aureus SA1199-B >1024 >1024 >1024
S. aureus SA10 >1024 >1024 >1024
E. coli ATCC 25923 512 2048 2048

C. albicans NEWP031 512 2048 2048
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Norfloxacin Norfloxacin Norfloxacin Norfloxacin
+ + +
Nerol Nerol Nerol
(128 pg/mL) (256 pg/mL) (512 pg/mL)

Fig. 1. MIC of the norfloxacin in absence or presence of nerol against SA1199-B. Each
result is the geometric mean of three simultaneous experiments. (***) Statistically
significant values (p < 0.001).

Similar results have been reported by previous studies which
showed the effectiveness of nerol as antifungal compound against
Aspergillus strains [30]. Also was verified that essential oils from
Ocimum basilicum Linn., Thymus algeriensis and Citrus aurantium L.,
which contain nerol in its composition were actives against bacteria
[31-35]. Besides, its trans isomer, geraniol, displayed strong ac-
tivity against C. albicans, E. coli and plant pathogenic bacteria,
Agrobacterium tumefaciens, Erwinia carotovora, Corynebacterium
fascians, and Pseudomonas solanacearum [36—38]. It was also re-
ported that the nerol is more effective as an antibacterial than as an
antifungal agent [39,40].

Although oxygenated monoterpenes have not presented
intrinsic activity against S. aureus, when they were placed on the
growth medium at sub-inhibitory concentrations they were able to
reduce the MIC for norfloxacin in a concentration dependent
manner against SA1199-B strain (Figs. 1-3). The oxygenated
monoterpenes also were able to improve the activity of the
ethidium bromide against SA1199-B (Fig. 3), a substrate of NorA
protein. These results indicate that the compounds tested are EPIs
for NorA efflux pump. Besides, the monoterpenes of open chain
(nerol and 3,7-dimethyl-octan-1-ol) were more effective as NorA
inhibitors than the monoterpene 1-methoxy-4-(prop-2-en-1-yl)

64

56

MIC (ng/mL)

Norfloxacin Norfloxacin Norfloxacin Norfloxacin
+ + +
DO DO DO
(128 pg/mL) (256 pg/mL) (512 pg/mL)

Fig. 2. MIC of the norfloxacin in absence or presence of 3,7-dimethyl-1-octanol (DO)
against SA1199-B. Each result is the geometric mean of three simultaneous experi-
ments. (***) Statistically significant values (p < 0.001).

MIC (pg/mL)

Norfloxacin Norfloxacin Norfloxacin Norfloxacin
+ + +
Estragol Estragol Estragol
(128 pg/mL) (256 pg/mL) (512 pg/mL)

Fig. 3. MIC of the norfloxacin in absence or presence of estragole against SA1199-B.
Each result is the geometric mean of three simultaneous experiments. (***) Statistically
significant values (p < 0.001).

benzene which presents a benzene ring.

Taking into account the criteria adopted by the Clinical and
Laboratory Standards Institute (CLSI, 2013) nerol decreased the MIC
of the norfloxacin for SA1199-B, changing its phenotype from
resistant to sensible. In the case of 3,7-dimethyl-octan-1-ol, the
SA1199-B phenotype was changed from resistant to intermediate.

Lipophilicity studies are relevant to know if a molecule is able to
interact with cell membranes [41]. The Log P of oxygenated
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MIC (pg/mL)

Ethidium Ethidium Ethidium Ethidium

bromide bromide bromide bromide
+ + +

Nerol DO Estragole

(256 ng/mL) (256 pg/mL) (256 pg/mL)

Fig. 4. MIC of the ethidium bromide in absence or presence of nerol, dimethyl-octanol
(DO) and estragole against SA1199-B. Each result is the geometric mean of three
simultaneous experiments. (***) Statistically significant values (p < 0.001).

monoterpenes was calculated and results showed that all of them
were found to be very hydrophobic, thus them are able to inter-
calate in the phospholipid bilayer. Interaction of hydrophobic
compounds with plasma membrane can increases its permeability
leading to dissipation of the proton-motive force [42,29].

Once NorA activity is dependent of the proton motive force [43],
we believe that partition of nerol or 3,7-dimethyl-octan-1-ol mol-
ecules into the plasma membrane affecting the proton gradient,
could be related with the inhibitory effect verified for NorA [44].
Despite, a damaged membrane by nerol or 3,7-dimethyl-octan-1-ol
could become more permeate to norfloxacin molecules, also
contributing to increase its intracellular concentration. Addition-
ally, damaged plasma membrane could lead to conformational
changes and inhibition of membrane proteins, such as NorA.

5. Conclusion

Oxygenated monoterpenes nerol and 3,7-dimethyl-1-octanol
were able to potentiate the antibiotic activity of norfloxacin
against SA1199-B, indicating that this essential oil components act
as efflux pump inhibitors of NorA. Thus, these compounds are po-
tential components of pharmaceutical forms for use in association
with norfloxacin in the antibiotic therapy of infections caused by
fluoroquinolone resistant Staphylococcus aureus.
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