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Crop models allow simulating the development and yield of the crops, to represent and to evaluate the
influence of multiple factors. The DSSAT cropping system model is one of the most widely used and con-
tains CROPGRO module for soybean. This crop has a great importance for many southern countries of
Latin America and for Argentina. Solar radiation and rainfall are necessary variables as inputs for crop
models; however these data are not as readily available. The satellital products from Clouds and
Earth’s Radiant Energy System (CERES) and Tropic Rainfall Measurement Mission (TRMM) provide con-
tinuous spatial and temporal information of solar radiation and precipitation, respectively. This study
evaluates and quantifies the uncertainty in estimating soybean yield using a DSSAT model, when
recorded weather data are replaced with CERES and TRMM ones. Different percentages of data replace-
ments, soybean maturity groups and planting dates are considered, for 2006–2016 period in Oliveros
(Argentina). Results show that CERES and TRMM products can be used for soybean yield estimation with
DSSAT considering that: percentage of data replacement, campaign, planting date and maturity group,
determine the amounts and trends of yield errors. Replacements with CERES data up to 30% result in %
RMSE lower than 10% in 87% of the cases; while the replacement with TRMM data presents the best sta-
tisticals in campaigns with high yields. Simulations based entirely on CERES solar radiation give better
results than those with TRMM. In general, similar percentages of replacement show better performance
in the estimation of soybean yield for solar radiation than the replacement of precipitation values.
� 2018 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.
1. Introduction

Simulation crop models allow to represent growth, develop-
ment and yield of crops and to evaluate new technologies or con-
ditions not yet explored. For these reasons, among others, the
models are useful in dynamic and changing environments such
as current agriculture, and can be used to estimate the impact of
current and future climates on crop yields and food security. As
Dokoohaki et al. (2016) state, crop models facilitate the clarifica-
tion and evaluation of multidimensional relationships between
factors affecting crops. These factors include planting date, cultivar
selection, seeding rates, soil type, fertilizer and irrigation strate-
gies, and seasonal weather patterns.

Long-term simulations require historical daily weather data
that many times are not available. Alternatively, gridded weather
databases are available, typically derived from: global circulation
models, interpolated weather station data or remotely sensed sur-
face data (van Wart et al., 2013).

Numerous models are available to predict crop growth, among
these the Decision Support System for Agrotechnology Transfer
(DSSAT) (Jones et al., 2003; Hoogenboom et al., 2012), the Agricul-
tural Production Systems sIMulator (APSIM) (Keating et al., 2003)
and the Soil, Water, Atmosphere, and Plant (SWAP) (van Dam
et al., 1997).

The DSSAT cropping system model is one of the most widely
used (Jones et al., 2017). This product was developed with a mod-
ular structure to facilitate its maintenance and to include addi-
tional components to simulate cropping systems, considering
different soils, climates, and management conditions. DSSAT con-
tains the CROPGRO plant growth module for grain legumes, partic-
ularly soybean (Glycine max L. Merr.), and others for maize (Zea
mays L.), rice (Oritza sativa L.), wheat (Triticum aestivum L.)
(Hoogenboom and Jones, 2015), etc. Modifications of DSSAT were
introduced in order to simulate the effects of tillage and surface
crop residues on soil water and organic matter dynamics (Porter
et al., 2010). The DSSAT is used to simulate crop sequences over
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any number of years, such as would occur in crop rotations, and it
is also used for studying the long-term effects of different manage-
ment practices on growth, development and yield of a crop, as well
as the soil water, carbon and nitrogen processes (Li et al., 2015).

Most crop simulation models require daily solar radiation, max-
imum and minimum air temperatures and precipitation (Abraha
and Savage, 2008; Borges et al., 2010; Wang et al., 2015). Solar
radiation is a necessary input for estimations; however these data
are not as readily available as air temperature (Will et al., 2013;
Almorox et al., 2017). Even at stations where solar radiation is
observed there could be many days when solar radiation data are
missing or lie outside the expected range due to equipment failure
and other problems mainly in several Latin American countries.
Particularly in Argentina, as indicated by Will et al. (2013), the
problem of lack of sufficient radiation data in quantity and quality
is widespread, and besides solar radiation is measured in few auto-
matic weather stations.

On the other hand, there is no agency to centralize information,
check the consistency of data and regularly calibrate the sensors
(Hossain et al., 2014). In the literature a number of empirical mod-
els, statistical approaches coming from time-series analysis, neural
networks and soft-computing techniques, have been applied to
estimate the solar radiation (Besharat et al., 2013). However, the
Angstrom–Prescott model (Prescott, 1940) which uses sunshine
duration, is the most commonly used to estimate this variable.

In the last decade, the satellite-derived images are promising
for estimating solar radiation data over large regions. These images
provide information of global radiation with temporal continuity
and spatial homogeneity (Zhang et al., 2014). Chen et al., (2014)
developed a method to estimate the global-scale total, direct, and
diffuse solar radiation using MODIS. Polo (2015) described the
methodology for deriving solar radiation incident components
from geostationary satellites, and he applied this methodology to
Meteosat satellites images and generated solar radiation maps of
Spain for the period of 2001–2011.

Due of the importance of the role of product data from Clouds
and Earth’s Radiant Energy System (CERES) to understand climate
change, different studies were recently developed to evaluate the
parameters of CERES on all types of surfaces matching ground-
based observations (Sai Krishna et al., 2014; Pan et al., 2015;
Zhang et al., 2015). In Almorox et al. (2017) the solar radiation gen-
erated by CERES and the surface radiation registers were compared
and evaluated, for different meteorological stations located in
Spain.

Another necessary variable for crop models is the precipitation;
generally the models require the spatially distributed data as input
to reflect the heterogeneity. Advances in remote sensing make pos-
sible a spatially and temporally continuous monitoring of rainfall,
covering long periods of time and large areas. For this, satellital
images are an alternative source of information (Cheema and
Bastiaanssen, 2012). A number of quasi-global high-resolution
satellite precipitation products have been developed over the past
few years, including the Tropic Rainfall Measurement Mission
(TRMM) launched by the National Aeronautics and Space Adminis-
tration (NASA) and the Japan Aerospace Exploration Agency (JAXA)
(Su et al., 2008; Meng et al., 2014). Yang and Nesbitt (2014)
affirmed that the TRMM PR is unique, because it is the first
space-aboard precipitation radar (PR) dedicated to rainfall mea-
surement, and it has a long period of observation from space. Its
advantages in measuring precipitation when compared to
ground-based radar are obvious because of the global coverage,
accurate calibration, downward viewing geometry, and lack of
beam blockage.

The TRMM product was used with different accuracies results
(Dinku et al., 2007; Villarini and Krajewski, 2007). Cheema and
Bastiaanssen (2012) developed a calibration protocol for TRMM
rainfall data at different spatial and temporal scales for Pakistan,
India, China (Tibet) and Afghanistan.

Soybean crop has a great importance for many southern coun-
tries of Latin America and for Argentina, particularly, considering
the economic yield obtained by farmers and the sown surface
(Sayago et al., 2017; Zhong et al., 2016). The US Department of
Agriculture (USDA) estimated that the soybean world production
in 2015/16 growing season was 317.6 million tons. The soybean
sown surface for Latin American countries which appear among
the top 10 soybean producers in the world (FAO, 2017), for the
2015/16 campaign was: 33,200,000 ha in Brazil (Ministério da
Agricultura, Pecuária e Abastecimento, 2017); 20,479,000 ha in
Argentina (Ministerio de Agroindustria, 2017); 3,370,000 ha in
Paraguay (Ministerio de Agricultura y Ganadería, 2017) and
1,140,000 ha in Uruguay (Ministerio de Ganadería, Agricultura y
Pesca, 2017).

This study evaluates and quantifies the uncertainty that arises
in estimating soybean yield using a DSSAT model, when recorded
weather data (solar radiation and precipitation), are replaced with
satellite products (CERES and TRMM). Different percentages of data
replacements, soybean maturity groups and planting dates are
considered for 2006–2016 period.
2. Materials and methods

2.1. Satellite images

Solar radiation data from satellite were obtained from CERES
(http://neo.sci.gsfc.nasa.gov/), which were produced, archived,
and made available to the scientific community by the Langley
Research Center (LaRC), the Atmospheric Sciences Data Center
(ASDC), and the National Aeronautics and Space Administration
(NASA) by the FLASHFlux project (http://flashflux.larc.nasa.gov/).

FLASHFlux data are produced using CERES, which measures
reflected and emitted solar radiation from the top of the atmo-
sphere, convolved with MODIS measurements from both the Terra
and Aqua satellite. CERES has three channels, one short wave mea-
suring reflected sunshine in the region from 0.3 to 5.0 lm, another
measurement of thermal radiation emitted by the Earth, between
8.0 and 12.0 lm, and a third, which accounts for the full spectrum
of outgoing radiation from Earth.

The spatial and temporal resolutions of the product used in this
study were 0.25� latitude/longitude and daily, respectively, for the
time period July 2006 to July 2016. Further details about the algo-
rithms and data processing are described in the work of Pan et al.
(2015).

The precipitation data were obtained from the TRMM satellite
(https://neo.sci.gsfc.nasa.gov/view.php?datasetId=TRMM_3B43D),
which has both passive and active sensors on board, and measured
rainfall since 1997 (Cheema and Bastiaanssen, 2012). It is a low-
latitude satellite that includes one precipitation radar (PR), along
with a multi-channel passive TRMM microwave imager (TMI)
and a visible and infrared (IR) scanner, a cloud and earth radiant
energy sensor and a lightning imaging sensor. The TMI compli-
ments the PR by providing the total hydrometeor (liquid and ice)
content within precipitation systems. The spatial resolution of
the product used in this study was 0.25� latitude/longitude and
the temporal one was daily, for the period July 2006 to July 2016.
2.2. CROPGRO soybean - DSSAT model

The CROPGRO Soybean model included in DSSAT v4.6 was used
to simulate the daily soybean growth until the stage of physiolog-
ical maturity and harvest, and then quantify the yield. Four
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modules that interact compose this software: development, and
carbon, water and nitrogen balance.

CROPGRO Soybean requires as input data those related to cli-
mate (maximum and minimum temperature, global solar radiation
and precipitation, among others), soil (physical and chemical prop-
erties of each profile horizon), crop management (residues, plant-
ing dates, fertilization, irrigation, etc.) and the genetic coefficients
of the cultivars. Although the computation time is daily, some pro-
cesses like photosynthesis or phenological evolution use a time
step.

This crop simulation model needs cultivar coefficients.
Salmerón and Purcell (2016) showed that the accuracy of the
model was similar when phenological coefficients of CROPGRO
were used instead of cultivar specific ones. These authors proved
that the set of generic coefficients tested across a wide range of lat-
itudes and planting dates were able to predict main developmental
stages with sufficient accuracy for many agronomic purposes. For
this, in this work the CROPGRO Soybean cultivar coefficients were
used.

In order to analyse and evaluate the different factors related to
the soybean yield three varieties with different maturity groups
(MG III, MG IV and MG V) were considered. Three planting dates
were evaluated (PD1:10/15, PD2:10/30 and PD3:11/15) for ten
agricultural campaigns between the years 2006 and 2016, allowing
to consider different photothermal and water regimes to which the
crop could be exposed. The simulation period for each campaign
was from 10/1 to 4/30.

To evaluate the effect of the substitution of registered solar
radiation data with CERES images, in each crop season, the
Fig. 1. Localization of the m

Table 1
Soil parameters for EEA Oliveros (INTA), Argentina.

SLB SLMH SLLL SDUL SSAT SBDM

25 A1 0.055 0.200 0.390 1.20
37 B1 0.165 0.308 0.386 1.25
51 B2 0.251 0.384 0.399 1.30
85 B2 0.254 0.386 0.401 1.30
112 B2 0.216 0.353 0.386 1.30
147 B3 0.183 0.322 0.389 1.25
240 C1 0.176 0.317 0.388 1.20

Parameters: SLB: Lower boundary of a soil layer (cm), SLMH: Master horizon, SLLL: Lower
3), SSAT: Saturate upper limit (cm3 cm�3), SBDM: Soil bulk density (g cm�3), SLOC: Soil
concentration (%), SLHW: pH in water, SCEC: Cation exchange capacity (cmol+kg�1).
observed data were randomly replaced for 10–100% (in 10% steps),
with 10 repetitions for each percent of replacement. The same
methodology was used for the precipitation data substitution
obtained from TRMM images. Finally, the comparison between
the yield (in kg ha�1) obtained by CROPGRO Soybean using regis-
tered data and the results considering separately CERES or TRMM
data with different replacement percentages was made.

2.3. Model application site

For the present work data from EEA Oliveros (INTA - Santa Fe
province, Argentina 32�330S; 60�510W), which is one important
agricultural region, (Fig. 1), acquired between July 2006 and July
2016 were used.

In this area, the predominant soils are Acuic Argiudoll (Barbieri
et al., 2017), many of which show a marked physical deterioration,
evidenced by compaction in the upper horizon. These processes
affect root growth of crops and produce a decrease in the rate of
water infiltration (Cosentino and Pecorari, 2002). For DSSAT soil
inputs, data up to 240 cm depth were used (Table 1). For Root
Growth Factor (SRGF) a value equal to 0.50 was considered for
Lower boundary of a soil layer from 25 to 147 cm and for the last
(240 cm) such value was 0.35.

The climate of the region is humid mesothermal with no (or lit-
tle) water deficit. Regarding temperature, summers are hot and
humid, with monthly mean temperatures of 23 �C, and winters
are temperate and dry, with mean temperatures of 12 �C. The mean
annual precipitation for Santa Fe Province, is approximately 1300
mm in the northeastern region, gradually decreasing to less than
odel application site.

SLOC SLCL SLSI SLNI SLHW SCEC

1.53 21.5 74.5 0.15 5.5 19.4
0.75 29.0 69.5 0.10 5.8 21.0
0.93 48.5 49.0 0.09 5.7 24.6
0.47 49.0 49.0 0.07 6.1 36.4
0.28 40.5 58.0 0.06 6.1 32.2
0.12 33.0 63.5 0.04 6.2 30.2
0.08 31.5 65.5 0.04 6.4 26.6

limit of plant extractable soil water (cm3 cm�3), SDUL: Drained upper limit (cm3 cm
organic carbon concentration (%), SLCL: Clay (%), SLSI: Silt (%), SLNI: Total Nitrogen



Table 2
Meteorological data and omission data days, for campaigns between 2006 and 2016 registered in EEA Oliveros (INTA).

Campaign Mean maximum
temperature (�C)

Mean minimum
temperature (�C)

Maximum solar radiation (MJ
m�2 d�1)

Minimum solar radiation (MJ
m�2 d�1)

Rainfall
(mm)

Omission
(days)

2006/07 27.7 17.0 40.0 0.3 1235 3
2007/08 28.5 15.7 32.6 1.8 583 3
2008/09 29.9 16.4 41.4 2.5 590 1
2009/10 28.3 16.7 29.1 1.8 941 2
2010/11 28.9 14.9 33.5 1.9 849 50
2011/12 28.4 15.9 28.9 0.5 796 17
2012/13 28.9 15.3 31.6 2.1 881 0
2013/14 29.4 16.4 29.8 1.5 981 0
2014/15 29.4 16.8 29.7 2.7 889 0
2015/16 28.5 16.6 29.7 1.5 1095 0

DSSAT
CROPGRO Soybean

OUTPUT
Yield

INPUT

Genetic Coefficients

III
MG   IV
         V

Weather Data

Tmax    Tmin

CERES

Crop Management
        10/15
PD   10/30
        11/15
Residues
Irrigation

Fertilization
Soil

Physical and 
Chemical properties 

TRMM

Solar 
Radiation Precipitation

Fig. 2. Schematic diagram of the methodology.
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950 mm towards the western and southwestern regions. The
annual precipitation regime has minimum values in winter (Jun
e–July–August), with less than 30% of the annual precipitation,
and maximum values in summer (January–February–March)
(Venencio and García, 2011). The recorded data were daily values
of maximum (TMAX) and minimum air temperature (TMIN), solar
radiation (SRAD) and rainfall (RAIN), obtained from INTA Oliveros
station (Table 2) (http://inta.gob.ar/documentos/informes-agrom-
eteorologicos-de-eea-oliveros). Daily extraterrestrial solar radia-
tion (Ra) was calculated according to the latitude and the day of
the year (Allen et al., 1998).

Data were checked for outliers using the criteria proposed by
Liu et al. (2009), which were missing measurements for any TMAX,
TMIN or SRAD, TMAX � TMIN and SRAD/Ra � 1.The omission of solar
radiation data was solved by replacing its value in the missing days
with the radiation obtained from Armstrong Prescott equation.

In the study region soybean cultivars correspond to maturity
groups III, IV and V. Soybean is grown under no-till systems, with
a distance between furrows of 0.52 m, and the planting date is con-
centrated between October and November. Harvesting takes place
during the months of March and April, and weed controls and fer-
tilization are carried out during the campaign.

As a summary, Fig. 2 shows the streamlines of the processes
applied to crop, soil and weather data (registered and satellital),
in order to estimate soybean yield with CROPGRO.
2.4. Model performance statistics

Model performance was evaluated comparing yield values with
coefficient of determination (R2), root mean square error (RMSE)
and percent root mean square error (%RMSE); this last statistic
was calculated as follows:

%RMSE ¼ 100

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1

ðYieldsips � YieldrdÞ2
s

1
n

Pn
i¼1

Yieldrd
ð1Þ

where Yieldrd and Yieldsips are estimated yield with registered
data and satellite image data (p = replaced percentage and s =
CERES or TRMM satellite data), respectively, for n observations.
3. Results and discussion

When the temporal evolution of solar radiation recorded in
Oliveros and provided by CERES was analysed, for all campaigns
considered in this work (Fig. 3), it became evident that the devia-
tion between the measured and derived from CERES values is very
small. It is important to note that the shapes of both curves (radi-
ation in different months of each campaign) were respected in the
whole period. Peak solar radiation occurs in January, which is coin-
cident with the early soybean reproductive stages (R1-R4), and
then decreases slightly in March when most of the seed filling
phase (R5-R6) takes place. This same pattern was observed for this
crop by Grassini et al. (2014), in inverted shape because they
worked in northern hemisphere.

Fig. 4 indicates that the daily CERES data show a strong consis-
tency with the in situ observations with average R2 = 0.849 and
RMSE = 3.44 MJ m�2 d�1 for the whole period. van Wart et al.
(2015) also evaluated the relationship between observed and esti-
mated by NASA POWER daily solar radiation for Oliveros in the
period 1998–2009, obtaining values of R2 = 0.8 and RMSE = 4.6
MJ m�2 d�1. These values are similar to those observed by Jia
et al. (2016) who presented average R2 = 0.79 and RMSE = 2.90
MJ m�2 d�1 for 340 worldwide locations. Also, Bai et al. (2010)
showed RMSE and R2 values of 3.4 MJ m�2 d�1 and 0.8, respec-
tively, when comparing 10 years of daily solar radiation data from
39 ground stations across the five maize planting regions of China,
with NASA-POWER database. Gilabert et al. (2018) used SEVIRI/
MSG satellite images to calculate solar global irradiation, in Spain
for the year 2011. Daily PAR (Photosynthetically Active Radiation
in MJ m�2 d�1) was obtained as 46% of the daily irradiation. The
resulting PAR presented a mean absolute error ranging from 0.5
MJ m�2 d�1 to 0.9 MJ m�2 d�1.

These results pointed out that error in estimating daily solar
radiation from satellite data are similar to those obtained with
other methods. Hunt et al. (1998) estimated solar radiation for
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Fig. 3. Values of registered (�) and estimated by CERES (�) solar radiation (MJ m�2 d�1) for all soybean campaigns between 2006 and 2016.

Fig. 4. Frequencies of scatter plot of the CERES and in situ daily samples (solar
radiation expressed in MJ m�2 d�1).
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use in crop modeling from maximum temperature, the difference
between maximum and minimum temperature, precipitation and
precipitation squared data, establishing RMSE values of 4.1 MJ
m�2 d�1 for Ontario. Quej et al. (2017), using a Gaussian model,
estimated solar radiation at 6 sites in Mexico and obtained RMSE
and R2 values between 0.97 and 1.50 MJ m�2d�1 and 0.83–0.90,
respectively.

Several authors state that crop simulation models could be
affected by the quality of solar radiation data (Abraha and
Savage, 2008; Biswal et al., 2014; Wang et al., 2015). For this rea-
son, we present statistics (Table 3) that show the adjustment
between registered data in the meteorological station and those
acquired from satellite CERES, for each one of the replacement per-
centages used.

The average errors for the three planting dates, as can be seen in
Table 3, varied between 1.88 and 4.13 MJ m�2d�1, considering all
the percentages of replacement data with those from CERES. These
values are comparable to those reported by Zhang et al. (2017) for
several authors in different locations. In each campaign, it is impor-
tant to note that the increase in the replacement percentage did
not produce significant variations in RMSE values. The 2006/07
campaign presented the highest errors, for all replacement per-
centages, and the minimums were registered in 2013/14.

Precipitation data, registered and informed by TRMM are pre-
sented in Table 4. Only for 2010/11 and 2014/15 campaigns, satel-
lite values were lower than the registered ones. In the remaining
campaigns, TRMM overestimated precipitation with differences
between 26 and 223 mm.

In Table 5, similarly to the solar radiation variable, the adjust-
ment between registered precipitation and those acquired from
TRMM, for three planting dates and for each of the replaced per-
centages are presented. RMSE, for the whole period of time consid-
ered in the model, varied between 6.16 mm and 19.68 mm; these



Table 3
Average RMSE (MJ m�2 d�1), considering three planting dates, for the adjustment between daily solar radiation registered in EEA Oliveros (INTA) and obtained by CERES,
according to percentages of replaced data.

Campaign Percentage of replaced data

10 20 30 40 50 60 70 80 90 100

2006/07 3.94 4.06 4.10 3.96 4.04 4.10 4.08 4.05 4.13 4.11
2007/08 2.05 2.08 2.10 2.12 2.16 2.13 2.18 2.16 2.14 2.15
2008/09 3.67 3.44 3.80 3.81 3.67 3.60 3.71 3.75 3.76 3.74
2009/10 3.21 3.11 3.14 3.22 3.14 3.24 3.22 3.22 3.18 3.20
2010/11 3.38 3.66 3.25 3.81 3.52 3.66 3.76 3.77 3.72 3.72
2011/12 2.60 2.56 2.26 2.49 2.48 2.57 2.65 2.59 2.63 2.62
2012/13 2.42 2.45 2.47 2.47 2.46 2.50 2.46 2.45 2.47 2.47
2013/14 1.88 1.96 2.05 1.99 1.98 1.98 2.00 2.00 2.01 2.00
2014/15 2.30 2.26 2.26 2.28 2.24 2.29 2.30 2.31 2.31 2.31
2015/16 2.11 2.22 2.30 2.24 2.28 2.31 2.35 2.37 2.41 2.45

Table 4
Cumulative rainfall (mm) registered in EEA Oliveros (INTA) and obtained by TRMM,
for campaigns between 2006 and 2016.

Campaign Registered TRMM

2006/07 1235 1287
2007/08 583 611
2008/09 590 613
2009/10 941 1057
2010/11 849 746
2011/12 796 822
2012/13 881 1058
2013/14 981 1089
2014/15 889 824
2015/16 1095 1130
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values represent minimum differences with respect to the total
precipitation registered in each campaign. The highest values were
observed in 2010/11 while the minimums in 2011/12.

Results shown in Table 5 are similar to those presented by van
Wart et al. (2015) who found RMSE values of 11 mm in the 1998–
2009 period for Oliveros, when they compared daily observed rain-
fall data with those estimated by TRMM.

Soybean yields obtained using DSSAT model, at different plant-
ing dates, campaigns and maturity groups, with solar radiation and
rainfall data recorded, are presented in Table 6.

CROPGRO estimated soybean yields between 599 and 5583 kg
ha�1 when registered values of solar radiation and precipitation
were used, for the area of application of this study (Table 6). The
yield values obtained from CROPGRO correspond to the average
yields recorded for the same region, which were between 2010
and 5630 kg ha�1 approximately (Enrico et al., 2013; Enrico and
Gentili, 2016). A special case is observed in campaign 2008/09
where the yield values were much lower than the average for the
whole period. As Papa and Tuesca (2014) stated, in this campaign
Table 5
Average RMSE (mm), considering three planting dates, for the adjustment between whol
according to percentages of replaced data.

Campaign Percentage of replaced data

10 20 30 40 50

2006/07 13.36 13.79 14.75 14.29 14.
2007/08 7.19 6.16 7.19 6.85 7.4
2008/09 12.91 14.20 13.59 14.51 14.
2009/10 15.43 16.54 16.09 16.17 17.
2010/11 17.92 17.58 18.66 20.58 18.
2011/12 6.71 6.42 6.74 6.65 6.5
2012/13 7.98 10.84 12.07 12.57 11.
2013/14 7.88 10.11 10.92 10.84 10.
2014/15 11.73 12.73 12.47 12.76 13.
2015/16 12.38 12.46 12.92 14.22 13.
there were atypical drought conditions and Pognante et al.
(2011) confirmed that in the year 2008 the biggest drought of
the last 50 years occurred in Argentina. On the other hand, the
yield reached the highest values in 2014/15. For this campaign in
Oliveros, Enrico and Gentili (2016) indicated that the distribution
of precipitation and the abundance of incident solar radiation
favored the optimum production.

The different combinations of planting date, maturity group and
agricultural campaigns, generated different genotype-environment
combinations for the simulation, which comprise an important
number of scenarios.

The yields obtained with CROPGRO when replacing different
percentages of the values of recorded solar radiation with that esti-
mated by CERES, are shown in Fig. 5.

In general, as is observed in Fig. 5, the resulting CROPGRO esti-
mates present different behaviours, depending not only on the
planting date and maturity group, but mainly on the yield value.
According to Rivington et al. (2006), crop yield is influenced by
the four meteorological data variables acting in conjunction with
each other; in this case yield represents the cumulative impact of
all variances in the climate data used by DSSAT.

Considering all campaigns, planting dates and maturity groups,
in 68% of the cases, the estimations present %RMSE less than 10%.
These cases increase to 87% when the percentage of data substitu-
tion is up to 30%. In the 2013/14 campaign, where there was a good
adjustment between recorded and obtained from CERES radiation
(Table 3), similar behaviour was observed for the yield estimation,
in which 92% of the cases had %RMSE less than 10% for all the plant-
ing dates, maturity groups and replacement percentages. On the
other hand, for the 2006/07 campaign which had the worst radia-
tion adjustment, only 60% of the cases had %RMSE less than 10%.
However, crop yield is directly influenced by changes in the
intensity and seasonal accumulation of meteorological factors
e campaign precipitation registered in EEA Oliveros (INTA) and obtained by TRMM,

60 70 80 90 100

98 14.87 14.51 14.65 14.82 14.72
5 7.24 7.37 7.31 7.26 7.30
75 15.00 14.05 14.56 14.15 14.41
02 17.88 17.78 17.49 17.62 17.66
15 18.97 19.54 19.10 19.68 19.45
7 6.77 6.66 6.66 6.71 6.69
74 12.13 11.36 12.04 11.90 12.01
63 10.27 10.35 10.51 10.65 10.61
41 13.68 13.20 13.70 13.64 13.59
36 13.72 14.59 14.29 14.78 14.98



Table 6
CROPGRO soybean yield estimation (kg ha�1) using registered solar radiation and rainfall, considering planting dates (PD) and maturity groups (MG) for all campaigns.

Note: higher and lower yields for each MG and PD are coloured in dark and light gray, respectively.

Fig. 5. Mean and deviations of soybean yields obtained by CROPGRO using different replacement percentages of solar radiation data (ten repetitions) for three planting dates
and MG III (–), MG IV (–) and MG V (–) for all campaigns. Solid lines represent yield obtained with recorded solar radiation.
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throughout the crop cycle, so not necessarily an adequate estimate
of daily solar radiation implies a good estimation of soybean yield.

da Silva et al. (2016) used estimated daily solar radiation for the
Triangulo Mineiro region (Brazil), with different temperature-
based models as input for SoySim software. Although the radiation
models have presented similar suitability, when these data were
used for simulating the potential soybean yield, the performances
diverged considerably. Also, Abraha and Savage (2008) estimated
total dry biomass of corn with CropSyst model in seven worldwide
locations. They found that the comparison of the ranking (obtained
from aggregation of several statistical indices) between the models
for daily solar radiation estimation and total biomass simulation
was difficult because of the difference in the time scale used in
calculations.

The results of the CROPGROmodel simulations for different per-
centages of precipitation replacement with TRMM data are shown
in Fig. 6. In general, not only the yield values obtained, but the rep-
etitions for each one of them, show different deviations of the aver-
age value. Yield biases differed strongly among the PD and MG
considered. It can be observed that, only when high yields are
recorded, the estimates with TRMM, for each replacement percent-
age, show the smallest deviations considering the ten repetitions.
In all other cases, important deviations are observed. For the
2008/09 campaign, which recorded the lowest yields, MG III
showed the smallest deviations for the first two planting dates
and the averages were close to the yield obtained with recorded
precipitation data.

The use of TRMM data as input in CROPGRO, as opposed to
CERES substitution, brought out a worse performance of yield esti-
mations. Considering all campaigns, planting dates and maturity
groups, only in 30% of the cases, the estimations presented %RMSE
less than 10%. These cases increase slightly to 38% when the data
substitution percentage is up to 30%. In the 2011/12 campaign,
where there was a good adjustment between recorded and
obtained from TRMM precipitation (Table 5), 10% of the cases
had %RMSE less than 10% for all the planting dates, maturity groups



Fig. 6. Mean and deviations of soybean yields obtained by CROPGRO using different replacement percentages of precipitation data (10 repetitions) for three planting dates
and MG III (–), MG IV (–) and MG V (–) for all campaigns. Solid lines represent yield obtained with recorded precipitation.

Table 7
Percent RMSE and RMSE, for campaigns with best adjustment between yields obtained using registered and CERES solar radiation data.

Maturity Group Campaign %RMSE and (RMSE in kg ha�1)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

PD: 10/15
MG III 2006/07 1.6 1.6 2.8 1.4 3.5 3.5 4.7 5 5 5.1

(64) (62) (1 1 1) (54) (1 3 9) (1 3 7) (1 8 8) (1 9 7) (2 0 0) (2 0 3)
MG IV 2012/13 1.1 1.8 1.5 1.4 1.9 1.7 1.5 1.8 3 3.2

(29) (50) (42) (39) (51) (47) (42) (49) (82) (88)
MG V 2010/11 0.4 1.5 1.4 1.5 1.9 2.1 1.9 1.9 2 2.5

(14) (47) (44) (47) (60) (67) (59) (58) (63) (80)
PD: 10/30

MG III 2014/15 0.7 1.2 1.5 1.9 2.1 2.6 3.3 3.9 4.2 4.4
(30) (54) (66) (86) (95) (1 1 6) (1 4 8) (1 7 7) (1 8 7) (1 9 9)

MG IV 2010/11 1.6 1.1 1.5 2.1 1.5 1.4 1.6 1.4 0.6 0.5
(48) (35) (47) (64) (47) (44) (50) (42) (20) (15)

MG V 2013/14 0.4 0.9 0.4 1 0.9 1 1.6 1.4 0.9 0.4
(19) (47) (22) (53) (44) (54) (83) (72) (48) (22)
PD: 11/15

MG III 2013/14 0.4 0.8 0.9 0.8 1.8 2.1 1.8 1.3 1.6 1.5
(15) (30) (34) (32) (67) (77) (68) (47) (61) (56)

MG IV 2013/14 0.5 1.6 1.3 1.6 1.2 1.5 1.2 1.2 1.3 1.3
(21) (73) (59) (72) (53) (69) (53) (56) (57) (58)

MG V 2013/14 0.5 0.9 0.7 0.7 0.7 1.1 0.8 0.7 0.5 0
(24) (43) (34) (34) (34) (53) (39) (33) (25) (1)
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and replacement percentages. In the 2010/11 campaign, which had
the worst precipitation adjustment, only 4.4% of the cases had %
RMSE less than 10%.

Ramarohetra et al. (2013) showed that satellite rainfall estima-
tions error affected the simulations of pearl millet in Niger differ-
ently. When annual water is limiting, crop yield simulations
were highly sensitive to biases in the estimated cumulative rainfall
amount. On the other hand, when cumulative rainfall amounts
were not limiting for crop yield or when it is well estimated by
satellite, crop yield simulations were sensitive to error in rainfall
distribution. Similarly, Heinemann et al. (2002) simulated soybean
yield using CROPGRO model with different levels of rainfall biases
and found that in dry years the greatest change occurred, whereas
wet years showed the smallest change.

Tables 7 and 8 show, for CERES and TRMM data respectively, the
%RMSE and RMSE of the campaign with the best performance in
yield estimation, for all levels of replacement, considering each
planting date and maturity group.

As can be seen in Table 7, the 2013/14 campaign exhibited the
best performance in estimating soybean yield, when replacing
100% of registered solar radiation with CERES data (in 4 of the 9
best estimates). This campaign presented the best RMSE solar radi-
ation estimations (Table 3). Although for the other cases errors
may be higher (Fig. 5), as Nonhebel stated in Rivington et al.



Table 8
Percent RMSE and RMSE, for campaigns with best adjustment between yields obtained using registered and TRMM precipitation data.

Maturity Group Campaign %RMSE and (RMSE in kg ha�1)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

PD: 10/15
MG III 2014/15 0.1 5.1 2.4 0.2 2.5 2.1 0.7 0.4 0.4 0.3

(5) (2 2 4) (1 0 5) (9) (1 1 1) (91) (30) (19) (19) (14)
MG IV 2009/10 0.2 0.2 0.1 0.1 3.4 3.2 0.2 1.8 1.8 0.1

(10) (11) (7) (7) (1 6 3) (1 5 2) (10) (89) (86) (3)
MG V 2009/10 0.1 0.1 0.1 0.1 2.2 1.8 0.1 0.1 0.1 0.1

(5) (5) (3) (6) (1 1 8) (99) (4) (4) (3) (3)
PD: 10/30

MG III 2014/15 0.2 8.3 3.6 0.4 0.7 5 3 1.9 0.2 0.2
(9) (3 7 2) (1 6 0) (17) (30) (2 2 7) (1 3 5) (84) (9) (10)

MG IV 2009/10 0.1 0.2 0.2 0.2 0.3 1.9 0.3 1.8 1.7 0.1
(6) (10) (9) (8) (12) (89) (13) (84) (79) (6)

MG V 2009/10 0.1 0.1 0.2 0.7 0.2 0.9 0.2 0.8 0.3 0.1
(4) (5) (9) (40) (8) (47) (13) (40) (14) (4)
PD: 11/15

MG III 2014/15 0.8 2.7 3.7 0.9 2 8.5 11.4 6.9 1.3 0.1
(34) (1 1 9) (1 6 0) (40) (88) (3 7 0) (4 9 5) (2 9 9) (58) (6)

MG IV 2014/15 0.1 0.2 2.3 0.3 0.9 5 9.3 3.5 0.2 0
(5) (12) (1 1 4) (15) (46) (2 4 3) (4 4 9) (1 6 8) (10) (1)

MG V 2014/15 0.1 0.1 1.4 0.2 0.2 1.5 4.5 0.8 0.1 0.1
(3) (7) (71) (10) (10) (75) (2 3 0) (41) (7) (4)
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(2006), inaccuracies in solar radiation of 10% and in temperatures
of 1 �C resulted in yield estimation errors of up to 1 tha�1, using
SUCROS model.

The 2014/15 and 2009/10 campaigns were the only ones that
presented the best performances in estimating soybean yield,
when replacing observed precipitation with TRMM data (Table 8).
These campaigns coincide with the highest obtained yields, using
registered data. According to Rolla et al. (2018) who evaluated
the impact of future climate on wheat, maize and soybean yield
in the Pampas region (Argentina), the climate parameter showing
the highest spatial variability is the rainfall frequency and distribu-
tion. They pointed out that when the rainfall frequency and distri-
bution is coincident with specific crop critical periods, could
impact crop growth with different degrees of severity, according
to the level of water stress.
4. Conclusions

The simulations of soybean yield using a DSSAT model (CROP-
GRO soybean) when replacing solar radiation and precipitation
data obtained from satellite images (CERES and TRMM, respec-
tively) in different percentages, demonstrate that the uncertainty
in the radiation and precipitation data have different influence
on the results. The percentage of data replacement with satellite
data, and the campaign, the planting date and the maturity group
of the crop, determine the amounts and trends of yield errors.

Simulations based entirely on CERES solar radiation gave better
results of yield estimation than those with TRMM precipitation
estimations. Similar percentages of replacement showed better
performance in the estimation of soybean yield for solar radiation
than with the replacement of precipitation values.

Solar radiation satellite data is particularly suitable with
replacements of less than 30%, without regard to yield obtained
in the campaign or crop physiological parameters; while the
replacement of precipitation, with TRMM data, was adequate in
simulations with high yields.

Although precipitation and solar radiation from satellite data
are widely employed, in a crop-modeling framework their use
can introduce large biases in crop yield simulations. A possible
explanation involves not only the magnitude of the error but also
the moment of occurrence of the error, since the yield is a value
that summarizes the different meteorological conditions to which
the crop was subjected throughout its growth season.
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