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A B S T R A C T

The Brazilian Atlantic Forest is a highly heterogeneous biome of global ecological significance with high levels of
terrestrial carbon stocks and aboveground biomass (AGB). Accurate maps of AGB are required for monitoring,
reporting, and modelling of forest resources and carbon stocks. Previous research has linked plot-level AGB with
environmental and remotely sensed data using pixel-based approaches. However, few studies focused on in-
vestigating possible improvements via object-based image analysis (OBIA) including terrain related data to
predict AGB in topographically variable and mountainous regions, such as Atlantic forest in Minas Gerais, Brazil.
OBIA is expected to reduce known uncertainties related to the positional discrepancy between the image and
field data and forest heterogeneity, while terrain derivatives are strong predictors in forest ecosystems driving
forest biomass variability. In this research, we compare an object-based approach to a pixel-based method for
modeling, mapping and quantifying AGB in the Rio Doce basin, within the Brazilian Atlantic Forest biome. We
trained a random forest (RF) machine learning algorithm using environmental, terrain, and Landsat Thematic
Mapper (TM) remotely sensed imagery. We aimed to: (i) increase the precision of the AGB estimates; (ii) identify
optimal variables that fit the best model, with the lowest root mean square error (RMSE, Mg/ha); (iii) produce an
accurate map of the AGB for the study area, and subsequently (iv) describing the AGB spatial distribution as a
function of the selected variables. The RF object-based model notably improved the AGB prediction by reducing
the mean absolute error (MAE) from 28.64 to 20.95%, and RMSE from 33.43 to 20.08 Mg/ha, and increasing the
R² (from 0.57 to 0.86) by using a combination of selected remote sensing, environmental, and terrain variables.
Object-based modelling is a promising alternative to common pixel-based approaches to reduce AGB variability
in topographically diverse and heterogeneous environments. Investigation of mapped outcomes revealed a de-
creasing AGB from west towards the east region of the Rio Doce Basin. Over the entire study area, we map a total
of 195,799,533 Mg of AGB, ranging from 25.52 to 238 Mg/ha, following seasonal precipitation patterns and
anthropogenic disturbance effects. This study provided reliable AGB estimates for the Rio Doce basin, one of the
most important watercourses of the globally important Brazilian Atlantic Forest. In conclusion, we highlight that
OBIA is a better solution to map forest AGB than the pixel-based traditional method, increasing the precision of
AGB estimates in a heterogeneous and mountain tropical environment.

1. Introduction

The Atlantic Forest, a biome of global ecological significance, is one
of the largest rainforests of the Americas, originally covering around

150 million ha, with highly heterogeneous environmental conditions
(Ribeiro et al., 2009). The wide latitudinal, longitudinal, and elevation
ranges present result in high levels of biodiversity, where flora and
fauna encompass 1–8% of the world’s total species (Silva and Tabarelli,
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2000) and high levels of terrestrial carbon stocks and biomass due to
high tree mass (David et al., 2017; Scolforo et al., 2016). During the last
500 hundred years, the Atlantic Forest has been subject to land use
change, with forests being replaced by croplands, cattle ranching and
by Eucalyptus forest for cellulose and paper production (Colombo and
Joly, 2010). When the area is converted to other land uses through
burning and clearing, greenhouse gases are emitted (Houghton et al.,
2009). Forest biomass stocks are a proxy of the quantity of these gases,
hence, there is critical need for estimating the magnitude of Atlantic
forest aboveground biomass (AGB) under scenarios of land use change
for monitoring natural forests remnants and supporting climate change
modeling studies (Houghton, 2005).

Spatially explicit estimates of AGB for the Brazilian Atlantic forest
are rarely available, owing to large areas of complex forest, where ex-
tensive inventories are typically not available as such activity is time-
consuming and expensive (Gardner et al., 2008). Sampling efforts with
limited or poor spatial distribution of plots have resulted in significant
geographical data gaps (Groves et al., 2002), making it particularly
difficult to use this information to quantify and delineate AGB dis-
tribution accurately, thus resulting in uncertainties in forest ecosystem
carbon cycle models (Xu et al., 2015).

Over the past two decades, a large number of studies have shown
that AGB forest biomass can be retrieved using various predictor vari-
ables derived from remotely sensed images (Baccini et al., 2008;
Galidaki et al., 2017; Hu et al., 2016; Su et al., 2016; Timothy et al.,
2016) and by combining remote sensing with environmental data
(Fayad et al., 2016). Up to now, Landsat images are the most commonly
used medium spatial resolution data in AGB studies (Andersen et al.,
2012; Powell et al., 2010; Zhu and Liu, 2015). Assisted by free and open
access to the data (Wulder et al., 2012), the spatial resolution (30m) of
Landsat allows for capture of forest management activities, as well as
robust calibration that enables consistent and predictable application of

algorithms (Cohen and Goward, 2004). However, the estimates are
mainly made following pixel-based approaches, which present some
disadvantages when compared with object-based image analysis
(OBIA). For example, using an object unit of analysis can reduce the
uncertainty of positional discrepancy between the image and field data
as there is a higher probability that a field plot is located in an object
rather than in a single pixel; the local noise and heterogeneity can be
effectively reduced when using a “pure” object; (Addink et al., 2007;
Zhang et al., 2018). Additional object-based spatial features can be
extracted for each object (Wulder and Seemann, 2003), offering po-
tential to improve AGB estimation by including the spatial attributes in
the model (Zhang et al., 2018). Studies applying object-based methods
have reported notable improvements in AGB estimation accuracies
(Kajisa et al., 2009; Mareya et al., 2018; Zhang et al., 2018).

Terrain data derived from digital elevation models and its derivative
maps, such as slope, topographic wetness index (Beven and Kirkby,
1979) and elevation derivatives (e.g., landscape positon, curvature), are
also reliable predictors in forest ecosystems which relate soil type, soil
water content, soil nutrients and light availability that directly influ-
ence vegetation (Luizão et al., 2004; Matasci et al., 2018). For example,
Kopecký and Čížková (2010) found a strong correspondence of topo-
graphic wetness index to plant distribution, suggesting this variable can
be useful for vegetation studies. It is expected that AGB stock of the
arboreal vegetation is influenced by elevation and its derivative mea-
surements since such variables are correlated to climatic conditions,
mainly in hilly and mountainous regions, such as the Atlantic forest in
Minas Gerais (MG) state, Brazil. However, application examples using
terrain data to estimate forest AGB in Brazil are rare, requiring more
tests.

Thus, we explored the question of whether OBIA together with re-
mote sensing, environmental and terrain data, can influence the pre-
dictive quality of forest AGB estimation in hilly and mountainous

Fig. 1. Study area and forest remnants locations in the state of Minas Gerais (MG), Brazil.
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regions by reducing variability to improve modeling results. Hence, this
study aims focusses on: (i) increasing the precision of the AGB esti-
mates; (ii) finding the optimal variables among environmental, terrain,
and remote sensing data to predict AGB; (iii) producing an accurate
map of Atlantic forest AGB in Rio Doce basin, in Minas Gerais state,
Brazil; and subsequently (iv) describing the AGB spatial distribution as
a function of the selected variables. As an outcome, we aim to offer
insights and options to improve the AGB estimates in high hetero-
geneity tropical forests, such as Rio Doce basin, helping guide the se-
lection of the appropriate analysis unit that reduces variability and
support for selecting variables that best capture AGB variability.

2. Study area and field measurements

The Rio Doce Basin has a total area of approximately 84,000 km², of
which 14% lies in the state of Espírito Santo (ES), whilst the remaining
86% are found in Minas Gerais state (MG), Brazil (Guevara et al., 2018).
The study area covers a portion of the Rio Doce Basin in MG territory
(Fig. 1), where climate is tropical humid with mean annual temperature
between 9.4 °C and 25.1 °C (Fig. 2a) and average annual precipitation
close to 1500mm (Fig. 2b). The regional relief is classified as hilly and
mountainous (Fig. 2c) (Hijmans et al., 2005). Approximately 98% of the
basin area belongs to the Atlantic Forest biome, composed of semi-de-
ciduous forest (19.90%), grassland (0.80%), rupestrian fields - “campo
rupestre” (0.17%), shrub savannas (0.01%), pinus (0.02%) and eu-
calyptus (3.64%), totalizing 1.417,970 ha of native vegetation and
259,537 ha of planted vegetation (Carvalho et al., 2006) (Fig. 2d).

We obtained the field measurements from 188 plots (10×100m)
from 15 forest remnants, which are part of the project: “Forest
Inventory of Minas Gerais”, conducted by Federal University of Lavras
(UFLA) from 2006 to 2008 (Fig. 3). This project generated abundant

information regarding the quality of forest remnants and information
related to the determination of AGB and the ongoing monitoring of
forests development throughout permanent plots.

During the field surveys, all trees were tagged and identified. The
diameter at breast height (DBH) and the total height of the trees with a
minimum DBH of 5 cm were measured. The trees used to determine the
AGB were all from destructive sampling campaigns. Scaling was con-
ducted on 674 trees, distributed over 456 species. The destructive
sampling was conducted by first measuring the DBH, total height and
stem height prior to felling the tree. The tree was then georeferenced,
cut down and had its height measured with a measuring tape. The tree
was then scaled using Huber’s method. Wood discs were sampled in
each tree to determine dry weight. We used the amount of AGB per plot
converted to hectares (Mg/ha) to model the spatial distribution of AGB
across the Rio Doce basin, with additional details provided in Scolforo
et al. (2015). The plots descriptive statistics are presented in Table 1.

3. Material and methods

A summary of our methods to derive the forest AGB maps is pro-
vided in Fig. 4. We described the data and individual steps taken in
detail below.

3.1. Data collection and pre-processing

We downloaded nineteen (19) bioclimatic variables with 1 km²
spatial resolution (Table 2) from WorldClim (Hijmans et al., 2005). The
bioclimatic variables represent annual trends (e.g., mean annual tem-
perature, annual precipitation) seasonality (e.g., annual range in tem-
perature and precipitation) and extreme environmental factors. Studies
in tropical forests have shown the importance of climatic variables in

Fig. 2. (a) Mean Annual Temperature (b) and Precipitation (c), Digital Elevation Model (DEM) (d), and distribution of forest types within the Rio Doce Basin, state of
Minas Gerais, Brazil. Temp – Mean Annual Temperature; Prec - Mean Annual Precipitation.
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determining biomass (Feng et al., 2011; Vieilledent et al., 2016; Kumar
and Mutanga, 2017).

To support the terrain analysis, a digital elevation model (DEM) of
30m of spatial resolution developed from the Shuttle Radar
Topography Mission (SRTM) was obtained. The data was pre-processed
to generate a depressionless DEM prior to the calculation of terrain
variables. SRTM and ASTER-derived DEMs are post-processed elevation
datasets that are frequently used for a wide range of applications due to
their high level of detail and wide coverage (Nikolakopoulos et al.,
2006). We chose SRTM supported by previous studies that have shown
desirable qualities and a superior accuracy when compared to ASTER-
derived DEMS (Jarvis et al., 2004). Recent studies confirmed that sur-
face processes such as hydrological, environmental, and pedological
modeling can be appropriately studied when using SRTM-DEM by
generating topographical indices (Daleles et al., 2008; Liu et al., 2012;
Collard et al., 2014; Guitet et al., 2015; Samuel-Rosa et al., 2015).

We obtained eight (8) Landsat-5 TM images to represent the study
area (Table 3). We downloaded the images from the free and open
archive of the United States Geological Survey for Earth Observation
and Science (USGS), Earth Resources Observation and Science (EROS)
Center, prepared as geometrically corrected and to surface reflectance,
Collection 1, Level 2 (Young et al., 2017). For the year 2007 (the same
year of the inventory data collection in the study area), we selected one
image date in which the scene was entirely without clouds. The images

were mosaicked and resampled to Albers Equal Area Conic projection
due to area and shape preserving characteristics of this projection (Duro
et al., 2012).

3.2. Deriving variables

We derived 14 terrain variables from the DEM (Table 4) using the
software SAGA GIS (Conrad et al., 2015). This software applies several
algorithms to the DEM, producing different terrain variables to portray
features, such as slopes, curvature, vertical distance of each place on the
landscape above water channels, shading, places proximity to water
channels, shading, and accumulation zones. The variables chosen in
this study have been widely used for predictions of soil properties
(Forkuor et al., 2017; Malone et al., 2017), but less so for tropical forest
AGB predictions. Thus, by adopting them, it is possible to evaluate if
these terrain variables effectively contribute to the modelling and
predicting of AGB in tropical forests.

The terrain variables selected was based on previous works on
tropical environments (Asner et al., 2009; Ferry et al., 2010; Xu et al.,
2015) and due to their individual capacity for representing terrain-re-
lated data that can be associated with vegetation types, accumulation of
water, slope gradient, elevation, erosion, shading, etc. It is expected
that such information may help predict vegetation patterns and, hence,
AGB throughout the study area. For example, the MRVBF map identifies
valley bottoms that are important hydrologic and geomorphic features.
Thus, distinguishing between hillslopes and valley bottoms is necessary
because of the substantial difference in hydrological processes in the
two landforms (Gallant and Dowling, 2003), which, in turn, influence
vegetation patterns.

Using the six pre-processed optical bands of Landsat-5 TM, we
computed a selection of spectral indices (11) (Table 5), shown in

Fig. 3. Spatial distribution of forest remnants within the Rio Doce Basin, detailing the spatial distribution of plots found in four forest remnants. Image background is
a Landsat TM false colour composite with NIR, SWIR and Red bands in red, green and blue colours, respectively (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article).

Table 1
Descriptive statistics of the measured AGB (Mg/ha).

Minimum Mean Maximum Standard Deviation

11.05 93.72 292.96 59.06
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previous research to be sensitive to vegetation characteristics (Galidaki
et al., 2017; Timothy et al., 2016). Spectral indices have been used to
estimate AGB, but there was no universal index applied to all vegetation
conditions (Gómez et al., 2014). Identifying the spectral indices that are
most strongly correlated with a specific biophysical parameter in a
given study area is difficult, especially in tropical environments due to

their complex forest stand structure (Lu et al., 2004).
Although vegetation indices such as NDVI, EVI, SAVI and MSAVI

have been proposed in previous research to estimate biomass (Lu et al.,
2016), some researchers in tropical forests found that spectral indices
including near-infrared (NIR) wavelength presented weaker relation-
ships with biomass than those including shortwave infrared (SWIR)
wavelength (Lu, 2005). Thus, we also included in the analysis the NBR,
NBR2 and NDMI spectral indices to evaluate their contribution to
predict AGB in tropical environments. The Tasselled Cap components
have been widely used to characterize vegetation conditions (Crist and
Cicone, 1984). These indices can measure the presence and density of
green vegetation, overall reflectance, soil moisture content, and vege-
tation density (structure) (Cohen and Goward, 2004).

Fig. 4. Aboveground biomass (AGB) mapping procedure.

Table 2
Environmental variables acquired from WorldClim.

Variables Description

BIO 1 Annual Mean Temperature (ºC)
BIO 2 Mean Diurnal Range (Mean of monthly (ºC)
BIO 3 Isothermality (BIO2/BIO7) (* 100) (ºC)
BIO 4 Temperature Seasonality (standard deviation *100) (ºC)
BIO 5 Max Temperature of Warmest Month (ºC)
BIO 6 Min Temperature of Coldest Month (ºC)
BIO 7 Temperature Annual Range (BIO5-BIO6) (ºC)
BIO 8 Mean Temperature of Wettest Quarter (ºC)
BIO 9 Mean Temperature of Driest Quarter (ºC)
BIO 10 Mean Temperature of Warmest Quarter (ºC)
BIO 11 Mean Temperature of Coldest Quarter (ºC)
BIO 12 Annual Precipitation (mm)
BIO 13 Precipitation of Wettest Month (mm)
BIO 14 Precipitation of Driest Month (mm)
BIO 15 Precipitation Seasonality (Coefficient of Variation) (mm)
BIO 16 Precipitation of Wettest Quarter (mm)
BIO 17 Precipitation of Driest Quarter (mm)
BIO 18 Precipitation of Warmest Quarter (mm)
BIO 19 Precipitation of Coldest Quarter (mm)

Table 3
Landsat scenes and acquisition dates used to calculate spec-
tral indices.

Landsat Path/Row Acquisition date

216/73 27 August 2007
216/74 27 August 2007
217/72 01 July 2007
217/73 14 May 2007
217/74 14 May 2007
217/75 02 August 2007
218/73 25 August 2007
218/74 25 August 2007
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3.3. Development of AGB models

3.3.1. Feature extraction
We used the AGB (in Mg/ha) from sample plots as dependent

variable and the entire group of environmental, terrain, and remote
sensing data as independent variables. We tested two units of analysis:
pixel- and object-based. The data were resampled to 100m×100m
(1 ha), so all the data had the same cell size.

In the pixel-based process, we conducted the feature extraction
considering co-located pixel at the plot location. In the object-based
process, we applied an automatic procedure using the eCognition
software for object-based image analysis. We used a multiresolution
segmentation algorithm (Baatz and Schäpe, 2000) set with three
parameters: shape, compactness, and scale. These parameters control
the shape, size, and spectral variation of segmented image objects. The
shape parameter was set to 0.1, compactness was set to 0.5, and scale
parameter was set to 30. Following Duro et al. (2012), we used a trial
and error approach to determine the appropriate scale parameter (SP)
based on a visual assessment of segmentation suitability, resulting in an
average object size of 15,000 m². We conducted the feature extraction
considering the average values of the environmental, terrain, and re-
mote sensing variables inside the objects to link with the AGB (Mg/ha)
from sample plots.

3.3.2. Random forests algorithm
In the Random Forests algorithm (Breiman, 2001), a large number

of trees are grown with the root node containing a different bootstrap
sample of the data with the same number of cases as the original data.
At each node, splitting is performed using a randomly selected subset of
the predictor variables. Modelling using the Random Forests algorithm
is less sensitive to noise in the training data and tends to result in more
accurate models (Baccini et al., 2008). We used randomForest Package
(Liaw and Wiener, 2002) available in the R software (R Core Team,
2014).

Approximately 70% of the data (132 plots) were randomly selected
and used to fit the model. The remaining 30% data (56 plots) were used
to test the model performance. The random sampling was defined to
preserve the overall class distribution of the data. The number of de-
cision trees (Ntree) was set to 10,000. In order to improve the AGB
model parsimony and predictive performance of AGB, we used the OOB
(out of bag) error as minimization criterion. We identified the smallest
number of variables with the lowest mean square error (MSE) em-
ploying a backward feature elimination approach (Díaz-Uriarte and
Alvarez de Andrés, 2006). The least important variables returned by
Random Forests was successively eliminated. We first take into account
the measures of importance (Random Forests variables importance) to
obtain an initial variable ranking and then proceeded with an iterative
backward elimination of the least important variables. In each iteration,
we eliminated the least important variables and a new Random Forests

Table 4
Terrain variables derived from digital elevation model (DEM) used to model AGB.

Name Description

Digital Elevation Model (DEM) Represents the elevation (m) of each pixel of the study area
Aspect Slope orientation in relation to North
Analytical Hillshade Represents the angle between sunlight and the terrain surface
Channel Network Base Level (CNBL) Distance to a channel network base level
Convergence Index Relief representation taking into account convergent and divergent areas
Cross-sectional Curvature Terrain plan curvature
Longitudinal Curvature Terrain profile curvature
LS Factor Slope-length factor
Multiresolution Index of Ridge Top Flatness (MRRTF) Identifies flat and high elevation places
Multiresolution Index of Valley Bottom Flatness (MRVBF) Identifies flat and low elevation places
Relative Slope Position Position of each cell in relation to the top and bottom areas
Topographic Position Index Comparison of each pixel to its neighbour values
Topographic Wetness Index Shows the feasibility of a site to accumulate water
Valley Depth (VD) Vertical distance in relation to the valley
Vertical Distance to Channel Network (VDCN) Vertical distance of each pixel to the channel network

Table 5
Summary of spectral bands and indices used to model aboveground biomass (AGB) in this study. Coefficients for the three basic Tasselled Cap indices (brightness,
greenness and wetness) are shown as B, G, and W, respectively.

RS data Name Formula Reference

EVI Enhanced Vegetation Index
+ +

G NIR-Red
NIR C1*Red-C2*Blue L

(Huete et al., 2002)

SAVI Soil Adjusted Vegetation Index +
+

(1 l)NIR-Red
NIR Red

(Huete, 1988)

MSAVI Modified Soil Adjusted Vegetation Index + +2NIR 1- (2NIR 1)2 -8(NIR-Red)
2

(Rondeaux et al., 1996)

NBR Normalized Burn Ratio
+

NIR - SWIR2
NIR SWIR2

(Miller and Thode, 2007)

NBR2 Normalized Burn Ratio 2
+

SWIR1 - SWIR2
SWIR1 SWIR2

(Miller and Thode, 2007)

NDMI Normalized Difference Moisture Index
+

NIR - SWIR1
NIR SWIR1

(Wilson and Sader, 2002)

NDVI Normalized Difference Vegetation Index
+

NIR - Red
NIR Red

(Tucker, 1979)

TCB Tasselled Cap Brightness + + +B1 * Blue B2 * Green B3 * Red (Crist and Cicone, 1984)
+ +B4 * NIR B5 * SWIR1 B6 * SWIR2

TCG Tasselled Cap Greenness + + +G1 * Blue G2 * Green G3 * Red (Crist and Cicone, 1984)
+ +G4 * NIR G5 * SWIR1 G6 * SWIR2

TCW Tasselled Cap Wetness + + +W1 * Blue W2 * Green W3 * Red (Crist and Cicone, 1984)
+ +W4 * NIR W5 * SWIR1 W6 * SWIR2

TCA Tasselled Cap Angle tan-1 TCB
TCG

(Gómez et al., 2014)
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was built by training with the remaining features for the assessment of
MSE. Besides obtaining the best overall predictive accuracy, variables
selection allowed us to simplify the modelling process and identify both
the minimum number of features that offer the best predictive accuracy
(Ismail and Mutanga, 2010) and the most important variables for AGB
prediction.

To compare the performance between pixel- and object-based ap-
proaches, we computed the adjusted coefficient of determination (R², in
%), which relates the part of the observed variability that is explained
by the model, and adjusts for the number of terms in a model; the Root-
Mean-Square Error (RMSE, in Mg/ha; Equation 1), which measures the
average difference between values predicted by the model and ob-
servations; the Mean Absolute Error (MAE, in %; Equation 2), which
indicates an average over or underestimation bias by the model
(Vieilledent et al., 2016); and by visual analysis of residuals graphs.

⎛
⎝

⎞
⎠

=
∑ =RMSE

Mg
ha

(E -M )
n

i 1
n

i i
2

(1)

∑=
=

MAE (%) 1
n

M -E
M

100
i 1

n
i i

i (2)

Where Mi and Ei are measured and estimated AGB values (Mg/ha),
respectively; and n corresponds to the number of plots.

3.4. Deriving the aboveground biomass map

We generated two maps of AGB for Rio Doce basin. In both maps,
we used a forest mask (Carvalho et al., 2006) considering the semi-
deciduous forest class to predict the AGB only in forest remains covered
by this land cover class.

In the pixel-based approach, we created continuous cells with di-
mensions of 1 ha (100×100m) for the entirety of the study area. In
each cell containing the values of the selected variables, we applied the
Random Forests regression model to predict the AGB. In the object-
based approach, in each object containing the average values of the
selected variables, we applied the Random Forests regression model to
predict the AGB.

4. Results

4.1. Model performance

According to the results, the Random Forests model using the ob-
ject-based unit analysis performed better compared to the pixel-based
unit. The Random Forests object-based model significantly improved
the AGB prediction by both reducing the MAE and RMSE (RMSE de-
creased from 33.43 to 20.08Mg/ha and MAE reduced from 28.64 to
20.95%) and increasing the R² (from 0.57 to 0.86). The increasing on
the performance of Random Forests object-based model is also high-
lighted in the scatter plot graphics, presented randomly distributed
residuals with no trends (Fig. 5).

In the object-based RF model, the analyses between calculated AGB
in sample plots and predictors (environmental, terrain, and vegetation
indices) showed that 6 variables (Fig. 6a), out of the entire set of 44
variables, were the minimum number of features that offered the best
predictive accuracy. The selected variables with their respective In-
crement in Mean Square Error (% IncMSE) were: Valley Depth (VD-
34.81%), Annual Precipitation (BIO12-30.66%), Annual Mean Tem-
perature (BIO1-23.77%), Tasselled Cap Wetness (TCW-21.80%), Mul-
tiresolution Index of Valley Bottom Flatness (MRVBF-19.91%) and Di-
gital Elevation Model (DEM-18.33%).

In the pixel-based RF model, the features selected to best predict the
AGB were 4: environmental (2) and terrain-related (2) (Fig. 6b). The
selected variables with their respective % IncMSE were: Channel Net-
work Base Level (CNBL, 32.79%), Minimum Temperature of Coldest

Month (BIO6, 29.27%), Valley Depth (VD, 28.93%) and Mean Tem-
perature of Coldest Quarter (BIO11, 28.81%).

The spatial distribution of the selected variables from the objected-
based RF model and pixel-based RF model within the study area is
presented in Figs. 7 and 8, respectively.

Fig. 5. Residuals analysis and scatter plots of measured value versus estimated
value by (a): pixel-based Random Forests (RF) model and (b) object-based RF
model. A 1:1 line (black, dashed) is provided for reference.

Fig. 6. The importance of the variables for the aboveground biomass (AGB)
estimation in this study measured using: (a) Random Forests object-based ap-
proach and (b) Random Forests pixel-based approach. TCW - Tasselled Cap
Wetness; MRVBF – Multiresolution Index of Valley Bottom Flatness; DEM –
Digital Elevation Model; CNBL – Channel Network Base Level; VD – Valley
Depth; BIO1 - Annual Mean Temperature; BIO6 - Minimum Temperature of
Coldest Month; BIO11 - Mean Temperature of Coldest Quarter; BIO12 - Annual
Precipitation.
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4.2. AGB maps in Rio Doce Basin

Fig. 9 shows the maps of forest AGB spatial distribution from the Rio
Doce Basin, divided into five (5) water resources planning and man-
agement units (DO1, DO2, DO3, DO4 and DO5), which were obtained
by both object-based and pixel-based estimation methods.

Both the object-based and pixel-based methods presented similar
spatial patterns relating the distribution of forest biomass, revealing a
decrease in AGB from the west (DO1, DO2, DO3) towards the east (DO4
and DO5) regions. This is primarily attributable to the variations in the
precipitation regime, as indicated in Fig. 7b (spatial distribution of
BIO12, annual precipitation). The western portion of the study area,
representing by DO1, DO2 and DO3, holds the forest remnants with the
highest mean AGB, ranging from 96.61 to 100.68Mg/ha (object-based
model) and 86.28 to 98.26Mg/ha (pixel-based model). In the eastern

portion of the Rio Doce basin (DO4 and DO5) lies the regions with
lower AGB. These areas have experienced anthropogenic disturbances,
such as exploitation of vegetation (Carvalho et al., 2006), leading to few
forest remnants in this region (see Fig. 2d). The total estimated AGB is
195,799,533Mg, ranging from 25.52Mg/ha to 238.26Mg/ha (object-
based method) and 178,967,656Mg, ranging from 20.04Mg/ha to
167.72Mg/ha (pixel-based method) (Table 6).

5. Discussion

5.1. Object-based versus pixel-based method to model AGB

Research aiming to predict AGB often utilize pixel level analysis
instead of object-based approaches. OBIA analyses instead of pixels can
reduce the “salt-and-pepper” effect in heterogeneous landscapes and

Fig. 7. Selected features that fit the best model using the object-based approach: (a) BIO1 - Annual Mean Temperature, (b) BIO12 - Annual Precipitation, (c) DEM –
Digital Elevation Model, (d) MRVBF - Multiresolution Index of Valley Bottom Flatness, (e) VD – Valley Depth, (f) TCW – Tasselled Cap Wetness.
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enhance the analysis accuracy in these environments (Dronova, 2015).
OBIA has been widely used in image classification (Blaschke, 2010;
Silveira et al., 2017; Wu et al., 2015) and change detection analysis
(Chen et al., 2012; Silveira et al., 2018a,b,c), however, its applications
in AGB modelling are sparse (Timothy et al., 2016). Also, there is a
higher probability that a field plot is located in an object rather than in
a single pixel, which can in turn be capitalized upon using an object-
based analysis (Addink et al., 2007).

Here, we compared the accuracy of object-based and pixel-based
methods in the estimation of Atlantic forest AGB using environmental,
remote sensing, and terrain data. The accuracy achieved with the ob-
ject-based method using the mean of 6 variables BIO1 - Annual Mean
Temperature, BIO12 - Annual Precipitation, DEM – Digital Elevation
Model, MRVBF - Multiresolution Index of Valley Bottom Flatness, VD –
Valley Depth and, TCW – Tasselled Cap Wetness – was compared to that
achieved with the pixel-based method using the singular values of CNBL
- Channel Network Base Level, BIO6 - Minimum Temperature of the
Coldest Month, VD - Valley Depth, and BIO11 - Mean Temperature of
the Coldest Quarter. Our results demonstrated that, using the object-
based approach, the AGB was notably improved, with R² reaching 0.86,
RMSE equal to 20.08Mg/ha and 20.95% of MAE. Thus, as we hy-
pothesized, OBIA was a better solution to map forest AGB than the
pixel-based traditional method.

Studies have indicated that several textural attributes extracted
from image objects showed a significant relationship with forest bio-
mass (Kajisa et al., 2009). Although in our study we have only used the
spectral information of data, and did not exploit the spatial context
from OBIA, the mean values of the selected variables inside the objects
were enough to reduce the heterogeneity within objects and improve
the AGB relationship with the independent variables.

Although the object-based approach provides good results in bio-
mass modeling, the method has limitations related to image segmen-
tation. The selection of the appropriate scale parameter (SP) to generate
objects for linking to the AGB plot measurement is a difficult task.
Finding an appropriate SP is a challenge, due to erroneous set impacts
the modeling results. Different levels of segmentation result in different
accuracy values for estimation biomass (Addink et al., 2007). Small SP
generates more homogenous objects than higher values. On the con-
trary, applying higher values can produce heterogeneous objects, which
might fail to represent the true structure of the plots (Zhang et al.,
2018). Starting with individual pixels and increasing the object size, the
predictions improve until an optimum value is reached. After that
point, increasing object size results in worse predictions (Addink et al.,
2007).

5.2. Selection of suitable variables for AGB modeling

Selection of suitable variables is important for developing biomass
estimation models. Here, we combined environmental, remote sensing,
and terrain data for AGB modeling. To allow for a better interpretation
of the relationship among the spatial distribution of selected variables
and the improved AGB map (object-based one), we divided the in-
dependent and predictive dependent variables into 2 classes: low and
high, and then, combined each one, generating four (4) classes
(Table 7): HH (Both high values), HL (High predictive AGB and low
independent variable value), LH (low predictive AGB and High in-
dependent variable value), and LL (both low values). We used Jenks
natural breaks (de Smith et al., 2018) interval to partition the data.
Natural breaks classes are based on natural groupings inherent in the
data. The Jenks method determines class breaks by minimizing within

Fig. 8. Selected features that fit the best model using the pixel-based approach: (a) CNBL - Channel Network Base Level, (b) BIO6 - Minimum Temperature of Coldest
Month, (c) VD - Valley Depth, (d) BIO11 - Mean Temperature of Coldest Quarter.
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class variance and maximizing differences between classes
(Pflugmacher et al., 2012).

Environmental data (climate and soil properties) are expected to
have an influence on the AGB variability (Ferry et al.,2010; Malhi et al.,
2006). As shown in previous studies, even in the case of strong en-
vironmental contrasts monitored at fine scale, environmental effects
only explain a small fraction of variations in AGB and interact largely
with more important structural effects (Guitet et al., 2015). This is
mainly explained by the limitations: (1) few sets of plots exist for which
high-quality data are available describing climate, soil properties, and
plot data, (2) even where these data exist, as is the case of this study
(188 field plots), rarely do plot networks cover broad gradients that can
disentangle covariation among climate, soil, and forest structure such
as stem density, DBH, height and basal area (Baraloto et al., 2011).

David et al. (2017) analysed the climate variables to develop a
general rule, applicable to large areas, for classifying tropical forests
into classes of aboveground forest carbon stocks. Their results suggested
that climate variables helped to discriminate carbon classes and their
effect differed between biomes and different sets of variables. The si-
multaneous use of mean annual temperature and mean annual pre-
cipitation enhanced the classification accuracy by up to 9.2% in the
Atlantic Forest biome across Minas Gerais state, Brazil, covering a
portion of Rio Doce Basin, the same study area assessed here. Forests
with the highest stocking levels are negatively correlated with mean
annual temperature and positively correlated with mean annual pre-
cipitation, meaning that, in warmer and drier regions, the forests have
lower carbon stocks.

Our study demonstrates the same behaviour, with an inverse rela-
tion between AGB and BIO1 and a positive relation with BIO12. The
west region of Rio Doce basin is characterized by high AGB values and
low temperatures (HL= 48.70% of the total area). On the contrary, the
east region present low AGB values and high temperatures

Fig. 9. Forest aboveground biomass (AGB) estimation maps modelled using: (a) the object-based approach and (b) the pixel-based approach.

Table 6
Mean and total aboveground biomass for each water resources planning and
management unit (DO1, DO2, DO3, DO4, and DO5) present in the Rio Doce
basin in Minas Gerais state, Brazil.

PLAN Object-based Pixel-based

Mean (Mg/ha) Total (Mg) Mean (Mg/ha) Total (Mg)

DO1 96.61 44,434,813 98.25 45,184,132
DO2 100.68 21,492,684 88.28 18,824,760
DO3 100.11 50,016,351 86.28 43,125,089
DO4 82.04 48,416,658 75.42 44,474,970
DO5 73.86 31,439,025 64.28 27,358,704
Total (Mg) 89.45 195,799,533 81.78 178,967,656

Table 7
Natural breaks interval to separate variables from low to high values.

Variables1 Interval Unit

Low - L High - H

AGB 25.5 – 87.0 87.1 – 238.3 Mg/ha
BIO1 13.4 – 21.3 21.4 – 25.1 ºC
BIO12 1,052.0 – 1354.0 1354.1 – 1792.0 mm
DEM 96.0 – 658.0 658.1 – 2078.0 m
MRVBF 0.0 – 2.2 2.3 – 6.9
VD 0.0 – 525.0 525.1 -1,190.0 m
TCW −0.36 - -0.11 −0.10 - 0.07

1 AGB – above ground biomass; BIO1 - Annual Mean Temperature; BIO12 -
Annual Precipitation; DEM – Digital Elevation Model; MRVBF - Multiresolution
Index of Valley Bottom Flatness; VD – Valley Depth; TCW – Tasselled Cap
Wetness.
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(LH=25.55% of the total area) (Fig. 10a). About precipitation, a po-
sitive relation with AGB was found (Fig. 10b). The west region is
characterized by high values (HH=36.94% of the total area) and the
east by low values (LL= 36.94% of the total area). These results cor-
roborate with studies such Li et al. (2015) in central Asian states and,
Raich et al. (2006) working in intact tropical evergreen forests globally,
in which precipitation behaves inversely in relation to temperature.

Terrain-related data are good predictors in forest ecosystems, which
usually relates to other variables that directly influence plant growth,
such as soil type (Jafari et al., 2014; Pelegrino et al., 2016), soil water
content (Ågren et al., 2014; Silva et al., 2014), soil fertility (Hengl et al.,
2015; Luizão et al., 2004), and soil texture (Chagas et al., 2016; Forkuor
et al., 2017). AGB in forest ecosystems vary with elevation (Rajput
et al., 2015; Shah et al., 2014). In most of these studies, carbon stocks
decreased with elevation, while carbon stocks at a given elevation

varied strongly between and within continents. This pattern is likely to
be driven by differences in climate (Ensslin et al., 2015). Some studies
did not find any link between AGB and elevation (Culmsee et al., 2010;
Dossa et al., 2013). They found a fairly constant AGB along an altitu-
dinal gradient. Some researchers have suggested that a hump-shaped
relationship may be due to drier climates at lower elevations (Dossa
et al., 2013). Here, elevation-DEM presented significant positive rela-
tion with AGB (Fig. 10c), with HH=46.62% and LL= 26.98% of the
study area, totalling 73.60% of forest remnants that are direct influ-
enced by elevation, in terms of AGB.

Our study also selected MRVBF and VD data as potential predictors
of AGB. We found two main patterns (Fig. 10d): (1) high AGB and low
MRVBF in the west region (HL=52.88%), probably due to the high
elevation and slope in this region and; (2) a positive correlation be-
tween AGB and MRVBF in the east region of Rio Doce basin

Fig. 10. Spatial distribution of combined values of aboveground biomass (AGB) with (a) BIO1 - Annual Mean Temperature, (b) BIO12 - Annual Precipitation, (c) DEM
– Digital Elevation Model, (d) MRVBF - Multiresolution Index of Valley Bottom Flatness, (e) VD – Valley Depth, (f) TCW – Tasselled Cap Wetness.
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(LL= 45.35%), indicating that the closer the place from the valley
bottom area, the higher the AGB, probably due to the presence of water
in greater amounts in such places.

Regarding the VD feature selected, we found four patterns
(Fig. 10e): (1) high AGB and high values of VD variable in the west part
of the Rio Doce basin and in a specific region in the central area, to-
talling 29.09%; (2) high AGB and low VD (HL=25.45%, mainly in the
west region; (3) low values of AGB and high VD (LH=27.26%) in the
east part and; (4) both low values (LL=18.20%) in the east region of
the study area. A negative relation means that closer to drainage net-
work, the lower the AGB. This situation can be explained due to the
human-caused disturbances in flat areas near to the water courses,
where forest areas were converted to pastures or croplands. On the
contrary, in steep slope areas (lower VD), the forest remnants are pre-
served.

It is important to note that almost all studies that evaluate topo-
graphic variables as determinants of forest biomass and forest structure
have been carried out in preserved forests (Jaramillo et al., 2003;
Laumonier et al., 2010), that is, in forests that are mostly unaffected by
human factors. The addition of anthropogenic factors complicates the
relationships between environmental variables and biomass and makes
prediction of biomass levels over space more challenging (Salinas-
Melgoza et al., 2018), but this could be achieved in this work.

Optical remote sensing variables, such as spectral bands, vegetation
indices, texture derivatives, Tasselled Cap transformations and prin-
cipal component analysis can be used as potential predictors for AGB
modelling for both object and pixel levels. However, some challenges
remain, such as (1) the saturation problem for forest sites with high
biomass density and the fact that (2) spectral variables are influenced
by external factors such as atmosphere, soil moisture, and vegetation
phenology (Lu et al., 2016). The roles of spectral bands in AGB mod-
elling are dependent on the complexity of forest structures (Lu, 2005).
Some indices saturate for forest sites with high biomass, which de-
creased their potential for AGB modelling (Lu et al., 2016). Fig. 11a
illustrate the relationship between NDVI and measured AGB from our
188 plots. It is possible to observe that NDVI saturated above 0.6, as-
sociated with a biomass of approximately 100Mg/ha, beyond which
further increases in biomass did not result in corresponding increases.
The model estimates are more accurate in areas with lower average

AGB (Fig. 11b) and lower standard deviation of AGB due to a saturation
between 100 and 200Mg/ha using Landsat data (as shown by
Duncanson et al., 2010). Others are sensitive to terrain illumination
effects in rugged surfaces or mountains like the study area (Galvão
et al., 2016). For example, Matsushita et al. (2007) when studying high-
density plantations over mountains in Japan, reported that the EVI is
more sensitive to topographic effects than the NDVI.

We found a positive relation between AGB and TCW (Fig. 10f)
corroborating with studies such Vicharnakorn et al. (2014) in tropical
forest lands of Thailand. The west region in the map is characterized by
both high values of AGB and TCW (HH=41.87%). However, we found
areas with low AGB and high TCW values (LH=32.29%) in the east
region of the study area.

6. Conclusions

We compared an object-based approach versus pixel-based method
for modelling and mapping aboveground biomass (AGB) in a Brazilian
Atlantic Forest basin by training Random Forests (RF) machine learning
algorithm using environmental, terrain, and remote sensing data.
Results suggested that object-based method is promising due to the
better performance in AGB prediction.

Object-based modelling is a viable alternative to the traditional
pixel-based method to reduce AGB variability in hilly, mountainous and
heterogeneous environmental that are influenced by climate and to-
pography conditions, captured by a combination of selected environ-
mental, terrain related and remote sensing variables. The spatial dis-
tribution of AGB revealed a decreasing trend from the west towards the
east region of the Rio Doce Basin, with a total of 195,799,533Mg,
ranging from 25.52 to 238Mg/ha, following the precipitation pattern
and anthropogenic disturbance effects.

This study provided accurate AGB estimates for the Rio Doce basin,
one of the most important watercourses of Brazilian Atlantic Forest. In
conclusion, we highlight that OBIA is a preferred solution to map forest
AGB over common pixel-based methods, increasing the precision of
AGB estimates in a heterogeneous and mountain tropical environment.
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