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A B S T R A C T

Information on wood properties is crucial in estimating wood quality and forest biomass and thus developing the
precision and sustainability of forest management and use. However, wood properties are highly variable be-
tween and within trees due to the complexity of wood formation. Therefore, tree-specific field references and
spatially transferable models are required to capture the variability of wood quality and forest biomass at
multiple scales, entailing high-resolution terrestrial and aerial remote sensing methods. Here, we aimed at
identifying select tree traits that indicate wood properties (i.e. wood quality indicators) with a combination of
terrestrial laser scanning (TLS) and airborne laser scanning (ALS) in an examination of 27 even-aged, managed
Scots pine (Pinus sylvestris L.) stands in southern Finland. We derived the wood quality indicators from tree
models sampled systematically from TLS data and built prediction models with respect to individual crown
features delineated from ALS data. The models were incapable of predicting explicit branching parameters
(height of the lowest dead branch R2=0.25, maximum branch diameter R2= 0.03) but were suited to pre-
dicting stem and crown dimensions from stand, tree, and competition factors (diameter at breast height and
sawlog volume R2= 0.5, and live crown base height R2=0.4). We were able to identify the effect of canopy
closure on crown longevity and stem growth, which are pivotal to the variability of several wood properties in
managed forests. We discussed how the fusions of high-resolution remote sensing methods may be used to
enhance sustainable management and use of natural resources in the changing environment.

1. Introduction

The biodiversity and resilience of intensively managed forests are
declining globally, leading to forest degradation in some regions
(Hosonuma et al., 2012; Liang et al., 2016a; Sasaki and Putz, 2009).
The argumentation for intensive forest management is mostly eco-
nomical, i.e., high volume yields are desired in short rotations (Jokela
et al., 2010). However, studies from four decades of species as diverse
as, e.g., Scots pine (Pinus sylvestris L.), radiata pine (P. radiata D. Don),
Norway spruce (Picea abies (L.) H. Karst.) and European beech (Fagus
sylvatica L.) across several ecoregions suggest intensive forest man-
agement practices have reduced wood quality by affecting several in-
fluential wood properties, such as wood density, microfibril angle and
tracheid dimensions (Macdonald and Hubert, 2002; Moore and Cown,
2017; Zhang, 1995; Zobel, 1984), adding to the similar effects induced
by rising temperatures (Pretzsch et al., 2018). Namely, accelerated

growth rates accompanied by short rotations has resulted in an increase
in the proportion of juvenile wood and knots in wood. In addition to
decelerating the rate of carbon sequestration in forests, reducing wood
quality limit the use of timber in long-term carbon-binding applications
in construction which would be central to the carbon balance of wood-
based industries (Haus, 2018; Sterman et al., 2018). These multifaceted
problems associated with intensive forest management in the changing
environment could be better understood by utilizing the increasingly
available remote sensing data to account for the variability of wood
properties in the planning of forest management and industrial wood
procurement. Bringing together a range of remote sensing datasets,
methods and analysis techniques is key part of the transition to next-
generation precision forestry that is required to tackle the various
challenges associated with the unsustainable use of natural resources
(Vauhkonen and Packalen, 2018; Xu et al., 2018).

Wood properties that determine wood quality (e.g. wood density,
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microfibril angle and tracheid dimensions) are the result of tree growth
and wood formation. Many wood formation processes are dependent on
cambial and apical age, and tree height and stem diameter, but are also
variable with respect to environmental and genetic factors (Lundqvist
et al., 2018; Rathgeber et al., 2016; Zobel and Jett, 2012). The tree apex
and crown are the interfaces between the tree and the environment that
act as regulators of growth by hormonally inducing cambial responses
in the stem (i.e. wood formation) to changing conditions and tree
structure (Sorce et al., 2013). One of the major implications includes
that juvenile wood with high earlywood content, low wood density and
steep microfibril angles is produced in young parts of stems (i.e. within
the live crown). Crown morphology, i.e. size and vigor are related to
wood properties and wood quality due to their relationship with the
maturation of wood (Kuprevicius et al., 2013; Mansfield et al., 2007).

In forestry, wood quality indicators are used to describe elements
that influence wood formation and the resulting wood properties: en-
vironmental factors such as growing stock density and soil fertility
(Auty et al., 2018; Huuskonen et al., 2014; Mäkinen, 1999; Moore et al.,
2009; Weiskittel et al., 2007) or competition indicators, such as the
complexity of the canopy layer, the characteristics of neighboring trees
and the species composition (Pretzsch and Rais, 2016). Alternatively,
tree-specific variables, e.g. the morphologies of stems and crowns and
the relationships between them, more explicitly reflect the individual
responses of trees to an environment (Kuprevicius et al., 2013;
Lindström, 1996; Moberg, 2006).

Integrating the mapping of wood properties into existing forest in-
ventory regimes requires that the acquired remote sensing data capture
tree-specific wood quality indicators, that is stem and crown descriptors
across various stands. Dense airborne laser scanning (ALS) data has
been shown effective at the delineation of individual tree crowns
(Hyyppä and Inkinen, 1999; Lindberg and Holmgren, 2017; Næsset and
Økland, 2002; Wang et al., 2016), and the estimation of various wood
properties or their indicators (Fischer et al., 2018; Hilker et al., 2013;
Luther et al., 2014; Maltamo et al., 2018). Previously, many of these
indicators were challenging to measure in the field, however the recent
emergence of terrestrial point cloud data from various sensors and
platforms has enabled detailed structural measurements of standing
timber (Liang et al., 2018a, 2018b; Liu et al., 2018). While operational
applications, such as laser scanners integrated in harvesters, are still
under development, terrestrial laser scanning (TLS) remains one of the
most accurate technologies to acquire highly detailed three-dimen-
sional (3-D) point clouds of individual trees in the forest environment
(Dassot et al., 2011; Liang et al., 2016b; Maas et al., 2008; Newnham
et al., 2015). The spatial range of TLS suits data acquisition on in-
dividual sample trees or plots, accompanied by geometric tree-mod-
eling methods for the 3-D reconstruction of individual tree stems and
branches (Bucksch and Lindenbergh, 2008; de Conto et al., 2017; Gorte
and Pfeifer, 2004; Liang et al., 2012; Pyörälä et al., 2018c; Raumonen
et al., 2013; Xia et al., 2015). The accuracies of various tree-specific
wood quality indicators resolved from TLS point clouds was reported to
be promising in previous studies (Barbeito et al., 2017; Höwler et al.,
2017; Kankare et al., 2014; Murphy et al., 2010; Pyörälä et al., 2018a),
as well as the wood and fiber properties predicted using TLS point cloud
features at stand-level (Blanchette et al., 2015; Giroud et al., 2019).

There is an increasing consensus that future advances in high-re-
solution remote sensing technologies will come as a result of merging
aerial and terrestrial sources to exploit their inherent strengths and
reduce their potential weaknesses (Holopainen et al., 2014; Lindberg
et al., 2012; Wang et al., 2019). The combining of airborne and ter-
restrial perspectives offers significant promise as complex tree-specific
structural attributes can be measured with terrestrial sensors and ex-
trapolated over larger areas using airborne and satellite data collection
(Van Leeuwen et al., 2011). This requires that logical relationships
should exist between terrestrially observable stem and branching
properties and aviary observable crown characteristics.

However, studies that used a combination of ALS and TLS data to

study tree-specific stem and crown descriptors are still few and several
questions remain. In this study, our aim was to clarify the accuracy of
predicting tree-specific wood quality indicators using a fusion of ALS
and TLS, and to analyze the results with respect to the theoretical
background of wood formation and forest management. To do so we
derived estimates of the stem and crown dimensions that have been
used as wood quality indicators in the previous literature, i.e., diameter
at breast height (DBH), volume of the sawlog section (stem dia-
meter > 15 cm) (Vsawlog), height of live crown base (Hlc), height of the
lowest dead branch (Hdb), and maximum branch diameter (MBD) using
TLS point cloud based geometric tree models. We then modeled the
extracted wood quality indicators with respect to features delineated
from ALS point clouds that described the stand conditions, between-
trees competition, and tree-specific characteristics.

2. Materials

2.1. Study design

The study area comprised ca. 2000 ha of southern boreal forests in
the Evo locality, southern Finland (Fig. 1). The average stand size is
approximately 2 ha. We focused on 27 even-aged, managed homo-
geneous Scots pine dominated stands at young, developed and mature
development stages, as indicated by the basal area (G), basal-area
weighted mean DBH (DG), and the mean tree height (H) of the 100
largest trees in DBH per hectare, i.e., dominant height (Hdom) (Table 1,
Fig. 2). Stand selection was aided with grid-based wall-to-wall ALS
point height information over the study area to ensure we captured a
representative spectrum of stand conditions over the area (Fig. 1). We
established 24 sample plots of 32×32m, one per stand, across the
range of variation. In addition, in the remaining 3 stands, which fully
represented the transition from young to mature forest within similar
stand conditions, we placed 4 plots per stand for the purpose of vali-
dating the representativeness of our sampling and to analyze the per-
formance of our methods. The total number of sample plots was thus
36.

2.2. Terrestrial laser scanning data acquisition

TLS data were acquired from May to July 2014 using either of the
following two phase-shift scanners: Leica HDS6100 (Leica Geosystems

Fig. 1. Study area (Evo) and sample plot locations within the area. The area is
illustrated by the airborne laser scanning (ALS) point clouds used to aid stand
selection; pixel colors indicate the mean height of ALS points above ground. The
coordinates are given in meters according to the EUREF-FIN coordinate system.
(For interpretation of the references to color in this figure legend, the reader is
referred to the Web version of this article.)
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AG, Heerbrugg, Switzerland) and Faro Focus3D X 330 (Faro
Technologies Inc., FL, USA). The HDS6100 uses a wavelength of
650–690 nm and the Focus3D X 330 a wavelength of 1550 nm. Both
scanners have a 3mm beam diameter at exit, and we used scanning
settings that resulted in a point spacing of 6.3mm at a distance of 10m
from the scanning location (in our data, ~10000 points per square
meter). We scanned each plot at five locations: at plot center and at the
northeast, southeast, southwest, and northwest plot corners, based on
compass directions.

Six target spheres with a diameter of 198mm were used as reference
targets to enable data registration. We placed one sphere directly to
magnetic north from the center scan location and distributed the rest of
the spheres evenly around the plot, ensuring that all six spheres were
visible to the center scan and at least three to each of the other scans.

2.3. GNSS positioning and tree mapping

We recorded the global coordinates of the TLS target spheres in the
field using two reference points in open areas near the plot (e.g., road,
lakeshore, clearing) using a Trimble R8 GNSS receiver (Trimble Inc.,
CA, USA) with real-time kinematic signal correction. We used a Trimble
5602 DR200 + total station to establish a survey point inside each plot
by measuring the distances and angles to the reference points and then
measured the sphere locations from the survey point using the total
station. We calculated plot corner coordinates using the aforemen-
tioned sphere coordinates. Given the difference between magnetic and
true north, the orientation of a plot in the field had to be solved using
the coordinates of the north sphere and center scan (EUREF-FIN). After
that, we calculated the plot corners, accordingly, detected all visible
trees within the plot borders in the TLS point cloud, and created a
preliminary tree map for a field crew.

2.4. Field data acquisition

The field crew acquired tree-specific field data from the sample
plots between May and August 2014. The measurers used the TLS-based
tree maps to identify plot borders and to locate each tree with DBH
exceeding 5 cm within the plot. Omitted trees were added to the map.

For each tree, the field crew identified their species and measured H
and DBH using a digital Vertex III hypsometer (Haglöf Sweden AB,
Långsele, Sweden) and calipers, respectively. For Scots pine trees, also
Hdb and Hlc were measured using the Vertex. All Vertex measurements
equaled an average of three repetitions. DBH was defined as an average
of two perpendicular measurements at a height of 1.3 m above the root
collar. Using the field measurements, we calculated tree-specific Vsawlog
and MBD by applying previously presented species-specific equations
for the vertical variation of stem and branch diameters in Scots pine in
Finland (Laasasenaho, 1982; Mäkinen and Colin, 1998). The stem taper
equation used DBH and H (Appendix I), whereas the branch diameter
equations used DBH, relative crown length (H-Hlc/H), and the estimated
number of whorls from the stem apex as explanatory variables
(Appendix II).

2.5. Airborne laser scanning data acquisition

ALS data over the entire study area were acquired in September
2014. The scanner was a Leica ALS70-HA. The data were collected from
an altitude of 900m above sea level at a speed of 150 knots with a pulse
rate of 240 kHz, and the resulting data had an average pulse density of 6
pulses per m2 with a footprint of 13.5 cm. The system recorded a
maximum of 5 echoes per pulse.

3. Methods

3.1. Terrestrial laser scanning preprocessing

TLS point clouds from the five scanning locations were co-registered
into the EUREF-FIN coordinate system using the sphere locations
measured in the field. Simultaneously, the stochastic noise (stray points
and dark points) was filtered from the TLS point clouds based on grid-
based analyses of point intensity values and point densities by the built-
in algorithms in the software used—Faro Scene 5.2 and Leica
Z + FLaserControl 8.6, respectively.

Table 1
The descriptive statistics of study material. G is the basal area, Hdom the dominant height, and DG the basal-area weighted mean diameter of trees. The numbers
indicate average (+/− standard deviation) within the category, calculated from the sample plot data.

Modelling data (24 stands) Validation data (3 stands)

Class Plots (n) G (m2/ha) DG (cm) Hdom (m) Stems (N/ha) Plots (n) G (m2/ha) DG (cm) Hdom (m) Stems (N/ha)
Young 8 20.09

± 8.04
17.52
±1.81

165.93
± 29.68

1179.20
±414.58

4 16.49
± 1.21

19.42
±0.89

174.58
± 4.01

637.21
± 116.75

Developed 10 23.21
± 4.96

21.62
±0.65

207.71
± 18.06

845.70
±287.50

4 20.24
± 2.54

25.65
±1.75

212.33
± 4.57

490.72
± 68.77

Mature 6 24.44
± 2.93

26.46
±2.90

236.22
± 25.13

618.49
±189.23

4 23.36
± 0.89

27.92
±2.78

237.68
± 2.00

449.22
± 46.49

Fig. 2. Distribution of basal area, basal-area weighted mean diameter, and dominant height of the sample plots (N= 36).
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3.2. Sample tree selection and extraction from terrestrial laser scanning
point clouds

We selected a systematic sample of trees from the TLS point clouds
of each plot with the aim of representing the original diameter dis-
tribution. The sampling was based on the field-verified tree map. A
number of Scots pine trees (n) equaling 10% of the total number of
Scots pine trees in each plot was sampled by ordering the trees ac-
cording to their DBH, dividing the ordered tree list into n sections each
including an equal number of trees, and choosing a random tree from
each section.

The selected sample trees were extracted from the TLS point clouds
using a canopy segmentation method. To speed up the process, we
thinned TLS multi-scan point clouds temporarily to a density where
points were averaged into a single point in a 50 cm 3-D neighborhood.
We then classified ground points using an iterative triangulation algo-
rithm and fitted a digital terrain model (DTM) with a 50× 50 cm re-
solution to the ground points (Axelsson, 2000) with TerraScan software
(Terrasolid oy, Helsinki, Finland). A digital surface model (DSM) with
an identical resolution was subsequently derived from the highest re-
turns, and a normalized canopy height model (CHM) was generated by
subtracting the DTM from the DSM (Fig. 3d). We segmented the CHM
into individual tree crowns using a local maxima based iterative area-
growing algorithm (Dalponte and Coomes, 2016) using R-package lidR
2.0.0 (Roussel and Auty, 2019) (Fig. 3e).

We extracted points from TLS point clouds in original point density
within the segment that had the smallest Euclidean distance to each
sampled tree according to the tree location in the field data. We ex-
amined the contents of extracted trees within the segments manually.
Failed segmentation occurred due to i) heavy occlusion making iden-
tification of a tree stem and/or individual branches difficult, ii) the tree
being dead, or iii) other than the dominant species, the tree was re-
jected from the final sample. The segments were not manually mod-
ified, that is, no removal of ground, understory, surrounding tree

canopies, or other cleaning of the point cloud was carried out. The final
sample included 268 trees for stem modeling, out of which 242 trees
were also suitable for branch modeling.

3.3. Geometric tree modeling and the estimation of wood quality indicators

The geometric tree modeling followed the principles described in
Liang et al. (2012) and Pyörälä et al. (2018c). In summary, we down-
sampled the points into 0.5× 0.5×0.5 cm voxels and carried out
principal component analysis (PCA) for 3-D points in the neighborhood
of the 100 nearest voxels. We classified the points based on their or-
ientation as indicated by eigenvectors, and flatness represented by ei-
genvalues (Liang et al. (2012). Flat, vertical objects were classified as
belonging to a tree stem, and other flat objects were classified as be-
longing to branches (Fig. 3c). The rest of the points were filtered out as
stochastic noise. We modeled the stem by fitting consecutive cylinders
to stem points from tree bottom to top and generated a continuous taper
function using cubic spline smoothing on the estimated stem diameters
with respect to height (Fig. 4), with the smoothing parameter set to 0.4
(Saarinen et al., 2017). For branch detection, the stem model was split
into vertical segments 15 cm in height in 5-cm intervals, that is, 15-cm
consecutive segments with a 10-cm vertical overlap (Pyörälä et al.,
2018c). The distribution of branch points in each vertical segment as a
function of degrees around the stem was smoothed by a convolution
with Gaussian window function. Branches were identified in the
smoothed distribution using a continuous wavelet transform peak-de-
tection method (Du et al., 2006). The detected branch points were
projected onto a horizontal plane using their eigenvector direction and
modeled as a circle utilizing the random sample consensus (RANSAC)
algorithm (Fischler and Bolles, 1981): the z-coordinate and diameter of
the fitted circle were considered to be the branch height (bh) and branch
diameter bd, respectively (Fig. 3c). Tree-specific bd observations were
smoothed with respect to bh using a cubic spline with smoothing
parameter 0.7 (Fig. 4).

Fig. 3. Material and methodologies used in this study. (a) Example of terrestrial laser scanning (TLS) point cloud from a sample plot. Colors indicate point height (H)
above ground. (b) Example of TLS sample tree extracted from the sample plot. (c) 1m vertical section of the example sample tree with points classified as crown
points (green) and trunk points (purple), as well as the parameters extracted for each detected branch: bα=branch insertion angle, bd=branch diameter, and
bh=branch height from ground. (d) Airborne laser scanning (ALS) canopy height model (CHM) of the sample plot. The x- and y-coordinates (m) refer to EUREF-FIN
coordinate system. (e) Results of tree detection and tree crown segmentation from the CHM. Tree segment matched to the TLS sample tree in b) is circled. (f) As an
example of ALS feature extraction, α-shapes fitted to the example tree segment with α=0.5, 1, 2, and 4, from left to right. (g) Modeling scheme. Wood quality
indicators were inferred from the stem and branch parameters of TLS sample trees. Stand and tree-specific ALS crown features that explained the most variability of
the wood quality indicators were selected using regression trees, and Random Forest was used to build the respective prediction models. (For interpretation of the
references to color in this figure legend, the reader is referred to the Web version of this article.)
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We estimated the following proxies of wood quality indicators tree-
specifically based on an analysis of the smoothed functions of the taper
curve and vertical distribution of branch diameters with respect to the
field reference data (Fig. 4):

• Stem diameter at 1.3m height above ground: DBHTLS

• Volume of stem with diameter > 15 cm: VsawlogTLS
• The bh at maximum bd: HlcTLS (i.e. we assume maximum bd is found
at Hlc)
• Minimum bh: HdbTLS

• Maximum bd: MBDTLS

3.4. Airborne laser scanning feature extraction

We clipped the full ALS data using the plot corner coordinates. We
delineated individual tree crowns from the data using an identical CHM
segmentation algorithm as with the TLS point clouds, (Dalponte and
Coomes, 2016), and calculated several geometric and point-based fea-
tures for each tree segment, each associated with one of three groups,
namely tree, stand, and competition descriptors (Table 2). The TLS
sample trees were each matched to a corresponding ALS segment and
field-measured tree based on the smallest horizontal distance.

The tree-specific features included the segment area (Aseg), crown
volume Vcr, point height percentiles (H0, H10, … H100) as well as the
vertical crown gap fraction, crown area, and subtractive crown volume
profiles extracted using R-packages lidR and alphashape3d 1.3 (Lafarge
and Pateiro-Lopez, 2017) (Supplementary Material 1).

The crown volumes were produced using alpha shapes (α-shapes:
convex hull weighted by α to remove triangle simplices longer than α2)

(Edelsbrunner and Mücke, 1994) (Fig. 3c). Vcr was calculated using
α=999. The point height percentiles refer to the heights where the
given percentage of points have accumulated. The vertical crown gap
fraction and crown area profile values refer to the probability of a gap
and the area occupied by points, respectively, within each consecutive
2m high section from ground level to the height of a tree. The sub-
tractive crown volume profile gives the volume of the points above
fixed heights with 2m vertical intervals. We used alternate α-values of
0.5, 1, 2, and 4 (Fig. 3c). Cubic spline smoothing of the obtained height
dependent crown profiles was used to estimate the logical proxies of
Hlc, i.e., heights of the maximum crown area (HMAX_A) and maximum α-
shape volume (HMAX_V_ α=0.5,1,2,4) (Fig. 4). We reduced the dimension-
ality of these vertical profiles into the first principal component (PC)
using PCA. The stand descriptors included the number of trees and
crown area per hectare and mean and maximum H100 and Aseg in each
plot. The competition variables included tree-specific mean distances to
the three nearest trees, and H100 and Ases values relative to the plot-
specific mean and maximum H100 and Aseg values, as well as the mean
of the nearest three trees.

3.5. Airborne laser scanning feature selection and Random Forest
predictions

Pearson's correlation coefficients (r) between the wood quality in-
dicators studied and the ALS features were inspected to screen the
linear dependencies between them. However, due to the inevitably
complex (i.e., nonlinear) interactions between the wood quality in-
dicators and various tree, stand, and competition factors, we applied
regression trees (Breiman et al., 1984) to select the sets of ALS features

Fig. 4. Height dependent relationships between terrestrial laser scanning stem and branch diameters and tree-specific airborne laser scanning features in four
example trees at different development stages, as indicated by the diameter at breast height (DBH). The vertical curves depict the cubic spline smoothing of each
variable with respect to height. Horizontal lines indicate height of the lowest dead branch (Hdb), height of the live crown base (Hlc), and tree height (H) measured in
the field.
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that could most comprehensively predict the response variables. We
built regression trees for each wood quality indicator studied and se-
lected the node features as explanatory variables using R-package rpart
4.1 (Therneau and Atkinson, 2018) (Supplementary Material 2).

Random forest's (RF) (Breiman, 2001) were then used to correct
possible over-fitting of the regression trees to our sample tree data with
iterative resampling (or bootstrapping) of the data (White et al., 2017),
with R-package randomForest 4.6 (Liaw and Wiener, 2002) (Supple-
mentary Material 2). RF generated separate forests of 2000 regression
trees for each TLS attribute and randomly selected two thirds of the
data for training in each tree. RF permuted between two features ran-
domly picked from the pre-selected features in each node. Simulta-
neously to the bootstrapping, RF evaluated the prediction accuracy
against one third of the sample tree data (out-of-the-bag, OOB, sample).
We reported the importance of the explanatory features in terms of the
proportional increment of the mean squared error (MSE-INC) of the
OOB sample for each regression tree before and after permuting the
predictor variable, and the total decrease in the residual sum of squares
(RSS-DEC) in OOB from the splitting of the variable. The final predic-
tion output was a regression tree averaged over all repeated bootstraps.

3.6. Evaluation of the methods

First, we evaluated the accuracy and performance of our measure-
ment and modeling methods: i) We compared the tree-specific values
derived from TLS tree models with those based on the field measure-
ments, i.e., we assessed the accuracy of the observed (subscript TLS)
values. ii) We evaluated the accuracy of the predicted values (DBHRF,
VsawlogRF, HlcRF, HdbRF, MBDRF) in terms of R2 and root mean squared
error by comparing the predicted (subscript RF) and TLS-derived values
in sample trees. iii) We used the RF models to predict wood quality
indicators over all delineated tree segments within our sample plots and
compared resulting probability density functions with those of the TLS
sample tree measurements, as well as the field-based observations of all
trees in the sample plots.

Then, we demonstrated the performance of our methods in de-
scribing the variability of wood quality indicators between stands. We

extrapolated the wood quality indicator predictions over three of our
study stands (Fig. 1) that represented different developmental stages,
namely a transition of managed Scots pine stands from young to mature
forest (as indicated by Hdom, G, and DG) and had four sample plots each.
We processed the stand-specific ALS point clouds similarly to those in
the plot-level data and used our RF models to predict tree-specific wood
quality indicators with respect to the crown features of delineated trees.
We standardized the wood quality indicator values, that is, calculated
the z-scores of the values with respect to the mean and standard de-
viation of predicted values over all trees in all stands:

=
=

z
y y

y y( )
i

i

n i
n

i
1

1 (1)

where zi is the z-score and yi the predicted value of wood quality in-
dicator studied in tree i, respectively, and y is the mean over all n
observations. Then, we calculated Euclidean distances between all in-
dividual trees based on the z-scores of each indicator separately, as well
as all together, and used hierarchical clustering to group trees into
clusters of similar individuals (Ward, 1963) (Supplementary Material
2). We analyzed the clustering of the trees with respect to the stand and
plot associated with each tree: i) to assess the representativeness of our
sampling and modeling scheme in the studied stands and ii) to identify
variabilities of wood quality characterized by the wood quality in-
dicators.

4. Results

4.1. Feature selection

We observed the highest linear correlations between DBHTLS,
VsawlogTLS, and HlcTLS, and the ALS point height features (percentiles
H40…H100, Hmean, Hmax, and HRelMax), the first PCs of accumulated
points, the canopy gap fraction, and the subtractive crown volumes
(Table 3). No strong correlations were observed between HdbTLS and
MBDTLS and any ALS feature (Table 3). Despite the close correspon-
dence between HMAX_A and HMAX_V_α=0.5,1,2,4 with Hlc in the empirical
data (Fig. 4), their correlations remained low (Table 3).

Table 2
List of airborne laser scanning features used in this study and their group associations and abbreviations.

Group Feature Abbreviation Unit

Tree descriptors
Segment area Aseg m2

Full crown volume with α=999 Vcr m3

Point height percentiles 0–100%, by 10% H0, H10, …, H100 m
First principal component of point height percentile profile HPC1 m
Height of the maximum height percentile increment HMAX_Incr m
First principal component of vertical canopy gap fraction profile gfPC1 *
First principal component of vertical crown area profile APC1 *
Height of the maximum crown area HMAX_A m
First principal component of subtractive crown volume profiles with α=0.5, 1, 2, and 4 VPC1_α *
Base height of the maximum crown volume with α=0.5, 1, 2, and 4 HMAX_V_α m

Stand descriptors
Plot mean tree height Hmean m
Plot maximum tree height Hmax m
Number of trees Ntrees N/ha
Plot canopy coverage Atotal m2

Plot mean segment area Amean m2

Plot maximum segment area Amax m2

Competition descriptors
Mean horizontal distance to three nearest trees Dist m
Relative height to plot mean HRelMean %/100
Relative height to plot maximum HRelMax %/100
Relative height to the means of three nearest trees HRelNN %/100
Relative segment area to plot mean ARelMean %/100
Relative segment area to the means of three nearest trees ARelNN %/100
*component score
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According to the regression tree based feature selection, point
height features (e.g., H100, H80, H70) explained most of the variance in
stem size variables (DBHTLS and VsawlogTLS)—ALS height percentiles
were the most abundant splitting nodes that could divide the data into
four more or less equally sized bins (Fig. 5). The importance of calcu-
lations based on RF (Fig. 6) supported the significance of the linear
relationship of these features with stem size that was observed in the
correlation matrix too (Table 3). Some additional dependency of the
stem size on stand and competition factors (Ntrees and HRelMax) resulted
in small additional splits to regression trees (Fig. 5) that were able to
improve MSE-INC and RSS-DEC if less than the tree descriptors (Fig. 6).

HlcTLS was mostly explained by the stand descriptors (point height
features Hmean and Hmax) and tree descriptors (height percentiles H100,
H60, and crown volume Vcr) (Fig. 5). Stand-specific Hmean divided HlcTLS

observations roughly into two (Fig. 5) and improved MSE-INC by al-
most 50% (Fig. 6). Additional tree and competition descriptors ex-
plained some of the remaining variances (Figs. 5 and 6).

HdbTLS and MBDTLS were poorly associated with ALS features
(Fig. 5). 40% of HdbTLS was associated with a single end node with
predicted value 3.2m, just two splitting nodes away (Hmax < 19m and

H90 < 17m) from the sample mean, 4.9 m (Fig. 5). For MBDTLS, the
competition indicator HRelMax and tree descriptor, height percentile H50

split the data into three bins of 51%, 31%, and 18% of observations
with means of 3.3 cm, 3.7 cm, and 3.9 cm, respectively (Fig. 5).

4.2. Model predictions

TLS-derived wood quality indicators for the stem variables (DBHTLS,
VsawlogTLS) concurred with their correspondences measured in the field
(R2 > 0.8) (Fig. 7). HlcTLS had R2 of 0.20, while HdbTLS and MBDTLS had
R2s < 0.1, when compared to their field-measured values (Fig. 7).

Based on the feature selection, wood quality indicator predictions of
DBHRF, VsawlogRF, and HlcRF had R2 values of 0.51, 0.50, and 0.40, re-
spectively, while HdbRF (R2= 0.25) and MBDRF (R2= 0.03) were more
challenging to model using the ALS features (Fig. 7). Under- and
overestimates of the lower and upper extremes, respectively, were
present in all models (Fig. 7).

The probability density functions of DBHTLS, HlcTLS, HdbTLS, and

MDBTLS of the sample trees represented those of corresponding field-
measured variables in the sample plot data (Fig. 7). However, DBHRF

predicted over the sample plots using ALS features resulted in a notably
narrower variance around the mean when compared with the original
function (Fig. 7). VsawlogTLS and VsawlogRF had similar probability density
functions to each other but were not able to capture the share of stems
smaller than the sawlog size (diameter < 15 cm) that were present in
the field data (Fig. 7). HlcRF and HdbRF represented well those of corre-
sponding field-measured variables in the sample plot data (Fig. 7).
MBDRF did not comprehensively represent the variance observed in
both field and sample tree TLS data, but the mean value was unbiased
(Fig. 7).

4.3. Variability of wood quality indicators

The tree-specific mean z-scores of predicted wood quality indicators
varied more between stands than between plots of the same stand
(Fig. 8a). When the z-scores of DBH and Vsawlog were considered, the
data were hierachically clustered into two groups (Fig. 8c). Namely, the
stand at the earliest development stage examined differed more from
the two more mature stands than the latter differed from each other.
However, Hlc made it possible to also distinguish between the mature
stands: Hlc z-scores exhibited notable differences between all three
stands. Moreover, the youngest stand had two distinct clusters of trees
with notably different Hlc z-scores. Hlc thus clustered the trees into four
different groups (Fig. 8). Hdb behaved synchronously to the increasing
tree size, i.e. showed clear distinctions between the youngest and the
more mature stands, but MBD was not useful in distinguishing between
the stands.

5. Discussion

Our results showed that while it was challenging to associate wood
quality indicators related to branching in the lower canopy (Hdb, MBD)
with ALS features, wood quality indicators describing dimensions of
stem and live crown (DBH, Vsawlog, Hlc) were predictable from ALS point
clouds (Fig. 7). The predicted wood quality indicators enabled logical
distinctions between forest stands. For example, while stem sizes be-
tween two mature stands were very similar, the crown sizes still dif-
fered (Fig. 8). The results likely reflect the fact that for Scots pine, the
canopy closure regulates the crown length in mature stands and de-
celerates the radial growth in stems below Hlc, resulting in the increase
of stem taper above Hlc (Fig. 4). The interpretation was supported by
the visually observed canopy closure from the youngest to the more
mature stands (Fig. 8a). Potentially, size-mediated wood formation
processes, e.g., the formation of knots and juvenile wood, could be
modeled from the combination of stem and crown size, with implica-
tions for various wood properties, e.g. wood density. In other words, the

Table 3
Pearson's correlation coefficients between the wood quality indicators
and airborne laser scanning features. See Table 2 for abbreviations.

J. Pyörälä, et al. Remote Sensing of Environment 235 (2019) 111474

7



inclusion of Hlc in remote sensing - based inventory variables, in ad-
dition to stem size variables, could be used to compare stands at similar
development stage. Ultimately, the information could be used to more
precisely tune forest management options to improve the carbon se-
questration in forests, and to target the harvesting operations according
to wood quality.

We showed that obtaining detailed ALS and TLS data on stem and
crown dimensions from a relatively small sample of trees can be used to
build reliable models to predict tree-specific stem and crown size
variables over forest stands (Fig. 8). Previously, Hilker et al. (2010) and
Hilker et al. (2012) compared TLS and ALS in deriving stand structure
parameters and concluded that the characteristics of the upper canopy
described by ALS and the structure of the lower canopy described by
TLS both correlated well with G, implying that the relationship of wood
quality to stand conditions and competition was captured with either
method. Our study confirmed that logical relationships exist between
the terrestrially and aerially observable canopy characteristics also tree-

specifically. Further work is required to expand the tree-specific re-
lationships from stand level to landscapes or larger regions.

Our sampling scheme aimed to preserve the original diameter dis-
tribution of the plots. The selected sample trees mostly represented the
shape of the wood quality indicator probability density functions within
our sample plots, although the proportion of small trees (diameter <
15 cm) was underrepresented in our sample (Fig. 7). Based on the
further analysis of subsamples from three stands, the one-plot sample
likely covered stand-specific variability of wood quality indicators
(Fig. 8). Our sampling was based on conventional field data covering all
trees in a plot. However, it could also be possible to utilize TLS-based
stem maps, as demonstrated by Vastaranta et al. (2014) and Saarinen
et al. (2014). TLS can record up to 90–100% of trees at breast height
with a scanning setup similar to ours in conditions favorable to TLS,
such as intensively managed Scots pine stands like those used in our
study (Table 1) (Liang et al., 2018a).

Our results confirm previous studies in that TLS can provide

Fig. 5. Results of the feature selection. Regression trees used in airborne laser scanning feature selection for each wood quality indicator (diameter at breast height
DBH, sawlog volume Vsawlog, height of the live crown base Hlc, height of the lowest dead branch Hdb, and maximum branch diameter MBD). Each node gives the mean
value (also indicated by the node shading—the darker the shade, the larger the value) and the percentage of observations associated with that node. Splits give the
splitting variables and the respective decision criteria. See Table 2 for ALS feature abbreviations and units.
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accurate estimates of stem dimensions and volume (Liang et al., 2014;
Saarinen et al., 2017), while the crown and branching parameters are
more difficult to obtain reliably (Pyörälä et al., 2018b; Wilkes et al.,
2017). Successful tree extraction plays a role in the accuracy of the stem
and branching attributes retrieved from TLS point clouds. The extrac-
tion in this study used two-dimensional segmentation of tree crowns
and manual verification of acceptable extraction results. Previous lit-
erature has presented several automated tree extraction and segmen-
tation methods that could also be used to separate trees (Burt et al.,
2018; Raumonen et al., 2015; Xia et al., 2015; Zhong et al., 2017). The
segmentation of fused ALS and TLS data was specifically studied in
Paris et al. (2017). In addition to methodologies, successful extraction
and tree modeling is highly dependent on the density of the point cloud.
Based on visual inspections of our data, the TLS point cloud density and
distances between the scan locations in this study were not optimal for
retrieval of branching structures for all trees, which is in line with
previous literature (Wilkes et al., 2017).

Our results showed that wood quality indicators describing the stem
and crown size were predictable from crown features extracted from
ALS point clouds, which concurred with the major body of literature
(Hilker et al., 2012; Lindberg et al., 2012; Maltamo et al., 2009, 2018).
Common bottlenecks associated with ALS predictions are the challenges
in species recognition and retrieving data from lower canopy layers
(Chasmer et al., 2006; Korpela et al., 2010). In our study, species-spe-
cific differences in wood quality indicators were not considered, as the
study focused on homogeneous Scots pine stands. Ideally, species re-
cognition could be based on TLS tree-model phenology (Åkerblom
et al., 2017), coincident with the estimation of wood quality indicators.
The retrieval of data from lower canopy layers might be improved with
high-resolution ALS data and, e.g. single-photon technology
(Swatantran et al., 2016). Moreover, segmentation algorithms better
suited to multilayered canopies are constantly developing (Aubry-
Kientz et al., 2019; Hancock et al., 2017; Wang et al., 2016). These
developments are especially crucial for such methods as presented in
this study to be applicable for more complex forest structures including
mixed, uneven-aged or unmanaged forests.

In previous literature, the mean values of several wood and fiber

properties (e.g., wood density and microfibril angle) were modeled
from stand-specific canopy structure and competition indicators re-
trieved from TLS (Blanchette et al., 2015; Giroud et al., 2019) and ALS
data (Fischer et al., 2018; Hilker et al., 2013; Luther et al., 2014). These
studies highlighted the influence of stand conditions and competition
on wood formation. However, the direct links between wood properties
and stand-level features were found to be inconsistent and not trans-
ferable between various stand conditions, which was likely due to the
lack of explanatory variables to account for the tree-specific vertical
and radial gradients of the wood properties. Indeed, the tree-specific
stem and crown size variables that were found to be predictable from
the fusion of TLS and ALS data in this study are important indicators of
several wood properties that are dependent on tree age or size. Most
prominently, crown length and vigor have known implications for the
knottiness and juvenile wood content in the stem base (Kuprevicius
et al., 2013; Mansfield et al., 2007). Therefore, the stem and crown size
variables predictable from the combination of TLS and ALS data could
be used to indicate the radial and vertical development of size-depen-
dent wood properties.

For example, the vertical trends of branch (and knot) insertion an-
gles and diameters can be modeled using common stand and tree de-
scriptors (Björklund, 1997; Groot and Schneider, 2011; Maguire et al.,
1999; Mäkinen and Colin, 1998; Moberg, 2006). MBD in this study was
derived from field-measured variables using empirical models with
parameter and error coefficients fitted to another data set (Mäkinen and
Colin, 1998). Despite the bias of tree-specific estimates, the density
distributions between MBD in full sample plot data and MBDTLS in the
sample tree data were unexpectedly similar (Fig. 7). Therefore, it
should be tested whether MBD (and other branch diameters) could be
predicted using the more readily predictable tree descriptors, e.g., H,
DBH, and Hlc, with the parameters of the branch diameter equation
calibrated using the branch diameters measured from the TLS point
clouds—instead of direct predictions of MBDTLS from ALS features. The
vertical distribution of branch diameters could then be used to describe
the crown development and the respective transition from juvenile to
mature wood.

The estimations of wood properties could be used to improve

Fig. 6. Importance of airborne laser scanning (ALS) features in Random Forest bootstrapping of the wood quality indicators (diameter at breast height DBH, sawlog
volume Vsawlog, height of the live crown base Hlc, height of the lowest dead branch Hdb, and maximum branch diameterMBD). MSE-INC is the proportional increment
of the mean squared error, and RSS-DEC the total decrease of the residual sum of squares. See Table 2 for ALS feature abbreviations and units.
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decision-making in forestry. Forest management practices that aim to
regulate the crown size, e.g., high initial stocking density and delayed
thinning, can improve wood quality (Höwler et al., 2017; Huuskonen
et al., 2014; Mäkinen, 1999; Mäkinen and Hein, 2006; Weiskittel et al.,
2007). However, these forest management options entail prolonged
rotations (Dobner et al., 2018; Downes et al., 2002; Fischer et al.,
2016), which increases the opportunity costs at the end of the rotation
(in volume-centric wood markets). Therefore, some studies proposed
wood quality based sale premiums to encourage forest managers and
owners to prolong rotations (Malinen et al., 2010; Moore and Cown,
2015). Such policies suppose systems such as those explored in this
study to monitor changes in wood quality and quantity over geographic
regions and time, as well as means to precisely plan the wood

procurement and distribution among various processors, accordingly.
The ALS and especially TLS used in this study are currently con-

sidered to be expensive alternatives when acquiring data over larger
areas. The availability of data from various sensors and platforms (from
mobile laser scanning to satellite imagery) that are dense and accurate
enough, as well as developments in algorithms and computing power to
process the data, thus require further addressing. This study was un-
dertaken in a region where the mapped areas are relatively small and
consist of mostly managed forests (e.g., Scandinavia) and where the
integration of such practices to national forest inventories and in-
dustrial wood procurement are already underway. However, the precise
mapping of natural resources (timber) will play a globally major role in
accounting for the various feedbacks between land use (forestry),

Fig. 7. Comparison of wood quality indicator estimations from terrestrial laser scanning (TLS) point cloud tree models (subscript TLS) with Random Forest pre-
dictions based on airborne laser scanning features (subscript RF) and field measurements (no subscript): diameter at breast height (DBH), height of the lowest dead
branch (Hdb), height of the live crown base (Hlc), maximum branch diameter (MBD), and volume of the sawlog section (Vsawlog).
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ecosystem functioning (wood formation), the environment, and climate
(Cardinale et al., 2012; Foley et al., 2005). For example, many regions
of temperate and tropical forests are under the threat of forest de-
gradation or deforestation due to the climate change and unsustainable
forest management (Sasaki and Putz, 2009). We have described how the
ability to map and model wood quality would help to target the har-
vests more precisely and to, e.g. prolong the rotations in managed
forests with possibly positive implications for the sustainability of the
commercial forestry, especially in threatened regions.

6. Conclusions

Our study highlighted that TLS point cloud based geometric tree
models and ALS crown features can predict stem and crown size from
tree- and stand-level factors. These variables can be used as indicators
of several size-dependent wood properties that are related to the tran-
sition from juvenile to mature wood. The fusion of TLS and ALS could
thus make it possible to distinguish between forest stands with distinct
carbon sequestration capacity and wood quality, and could be applied
to the planning of forest management and use. Our results were based
on simple stem and crown variables in specific forest conditions with
restricted sample size and they should be applied with the proviso that

TLS data accurately represent the variability of tree morphologies in the
area of interest and that the ALS data are dense and detailed enough for
the delineation of individual tree crowns. Approaches such as those
presented in this study are part of the transition to precision forestry
that is required to enhance sustainable management and use of forest
resources.
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Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.rse.2019.111474.

Fig. 8. (a) Tree maps of the three stands
studied. Tree crowns are delineated from
the airborne laser scanning point clouds,
and trees are color-coded based on the
mean z-score of wood quality indicators
predicted based on terrestrial laser scanning
sample trees and using Random Forest. The
rectangles indicate the sample plot loca-
tions in each stand. (b) Sample plot in-
formation from each stand. Hdom is the
dominant height, G the basal area, and DG
the basal-area weighted mean diameter of
trees in each subsample. (c) Hierarchically
clustered distance matrices of tree-specific
wood quality indicator z-scores and the sum
of all wood quality indicator z-scores from
the sample plots (number of trees, i.e.,
number of rows and columns 434). Each
cell corresponds to the difference in the
particular z-score between two trees. The
difference (distance) is indicated by the cell
color gradient. Dendrograms illustrate the
hierarchy of the clusters, with the height in
the hierarchy corresponding to the
Euclidean distance between z-scores. The
horizontal sidebars above the matrices in-
dicate the stand and plot identity of each
tree, as color-coded in (b).
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Appendix I

The calculation of sawlog volume (Vsawlog)
Firstly, 1982 Firstly, the following stem diameters (m) were derived with a stem taper equation (Laasasenaho, 1982):
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Then, Vsawlog (m3) was calculated as the volume of truncated cone:
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Where:

- H is the total tree height (m), measured in field
- DBH is the stem diameter (m) at breast height (1.3 m from ground), measured in field
- D20 is the stem diameter (m) at the height of 0.2 * H,
- H0 is the stump height (m) (assumed 0.2 m in this study)
- D0 is the stem diameter (m) at H0,
- Dsawlog is the stem diameter (m) at the top of the sawlog section (minimum allowed 0.15m)
- Hsawlog is the height (m) at the top of the sawlog section, solved for Dsawlog=0.15m
- b0…7 are the parameter coefficients from Laasasenaho (1982):
• b0=2.1288
• b1=−0.6316
• b2=−1.6082
• b3=2.4886
• b4=−2.4147
• b5=2.3619
• b6=−1.7539
• b7=1.0817

Appendix II

The calculation of maximum branch diameter (MBD)
The following equations were used, applying the methods in Mäkinen and Colin (1998):

= ++ + + +
MBA e eb b DBH b H H b DBH H H µln 0.3 ln 0.3 2

lc lc0 1 2 3 (6)

= ++ + + + + +
MBD e eb b DBH b H

H b H H b H H b MBA µ
0.3 ln 0.3 2

lc lc lc4 5 6 7 8 9 (7)

Where:

- DBH is the stem diameter (m) at breast height (1.3 m), measured in the field
- H is the total tree height (m), measured in the field
- Hlc is the height of the live crown base (m), measured in the field
- MBA is the insertion angle (°) associated with MBD
- H H

0.3
lc is the estimate for the number of the whorl of MBD from stem apex

• MBD is assumed to be found at Hlc, based on, e.g. Maguire et al., (1999).bib_Maguire_et_al_1999
• 0.3 m is assumed the mean whorl-to-whorl distance, based on Pyörälä et al., (2018a).bib_Pyörälä_et_al_2018a

- b0…9 are the parameter coefficients from Mäkinen and Colin (1998):
• b0=3.8690
• b1=−0.0005
• b2=0.1772
• b3=−0.0002
• b4=1.9872
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• b5=0.0012
• b6=1.3216
• b7=−0.0155
• b8=0.6781
• b9=−0.0285

-
+

e
µ

2 is a correction term calculated with the error coefficients μ and ε from Mäkinen and Colin (1998):
• μ=0.00702
• ε=0.03798
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