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A B S T R A C T

Drones offer entirely new prospects for precision agriculture. This study investigates the utilisation of drone
remote sensing for managing and monitoring silage grass swards. In northern countries, grass swards are fer-
tilised and harvested three times per season when aiming to maximise the yield. Information about the grass
quantity and quality is necessary to optimise these operations. Our objectives were to investigate and develop
machine-learning techniques for estimating these parameters using drone photogrammetry and spectral ima-
ging. Trial sites were established in southern Finland for the primary growth and regrowth of grass in the
summer of 2017. Remote-sensing datasets were captured four times during the primary growth season and three
times during the regrowth period. Reference measurements included fresh and dry biomass and several quality
parameters, such as the digestibility of organic matter in dry matter (the D-value), neutral detergent fibre (NDF),
indigestible neutral detergent fibre (iNDF), water-soluble carbohydrates (WSC), the nitrogen concentration
(Ncont) in dry matter (DM) and nitrogen uptake (NU). Machine-learning estimators based on random forest (RF)
and multiple linear regression (MLR) methods were trained using the reference measurements and tested using
independent test datasets. The best results for the biomass estimation, nitrogen amount and digestibility were
obtained when using hyperspectral and 3D data, followed by the combination of multispectral and 3D data.
During the training process, the best normalised root-mean-square errors (RMSE%) were 14.66% for the dry
biomass and 12% for fresh biomass; the best RMSE% values for NU, the D-value and NDF were 13.6%, 1.98%
and 3% respectively. For the primary growth, the accuracies of all quality parameters were better than 20% with
the independent test datasets; for the regrowth, the estimation accuracies of the D-value, iNDF, NDF, Ncont and
NU were better than 20%. The results showed that drone remote sensing was an excellent tool for the efficient
and accurate management of silage production.

1. Introduction

Timely information about the properties of crops is required in
order to facilitate the utilisation of precision agriculture technologies
for sustainable agricultural production. By choosing suitable seed

mixtures, fertiliser application rates and the timing of the harvest,
grassland management aims to secure adequate yields of a desired
quality for feeding at minimum cost and under the prevailing weather
and edaphic conditions of production. In the Nordic countries, silage
grass swards are harvested two to four times a season, and fertiliser is
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applied once for each harvest. Thus, information on the grass quantity
and quality, provided several times in a growing season, is of high value
for making decisions about the harvesting time and fertiliser applica-
tion rate.

The fundamental quantity measures of swards are the fresh and dry
biomass, which have well-described measurement methods in the
sward research literature (e.g. Hopkins, 2000; 't Mannetje, 2000). The
term ‘fresh yield production’ refers to the mass of herbage that can be
removed by mechanical harvesting. Herbage production is expressed on
an area basis for a given period, for example, the weight of dry matter
(DM) kg/ha per cut or year. The small-plot cutting method is the most
widely used technique for assessing herbage production in research
studies (Hopkins, 2000). The basic operation involves cutting and
weighing a sample of fresh herbage from a precisely measured area at a
specified cutting height. After weighing, the sample is dried in an oven
to determine the DM percentage, enabling the DM yield per unit area to
be calculated (Hopkins, 2000). Indirect methods are used, particularly
for grazing management purposes, and are usually manually measured
from a few sample points in the field, using devices such as a rising
plate meter, capacitance meter or meter stick ('t Mannetje, 2000;
Sanderson et al., 2001; Virkajärvi, 1999). The ultimate quality assess-
ment of the forage is carried out in feeding trials involving milk- or
meat-production ruminants. Although this is an expensive method and
requires a lot of feeding material, the method is continuously needed,
for instance, in diet formulation studies (Rinne, 2000; Kuoppala, 2010).
In vivo and in vitro methods have been developed and used to predict
the digestibility of organic matter, which provides a measure of the
available energy in the forage dry matter for the specified animal spe-
cies (Rymer, 2000). Huhtanen et al. (2006) stated that the in vitro
pepsin-cellulose solubility of organic matter and the concentration of
indigestible neutral detergent fibre (iNDF) predicted the digestibility of
organic forage matter with an acceptable accuracy for practical feed
evaluation purposes. However, these methods are time consuming and
laborious. Since Norris et al. (1976) introduced the near-infrared
spectroscopy (NIRS) equations for forage quality laboratory estimation,
the method has developed into a rapid and practical method and is
used, for example, to follow the quality development of growing
swards, as well as in silage quality analysis. Once the analyser is cali-
brated, the NIRS method is cheaper than the classical reference
methods and studies have shown that there is a good agreement be-
tween the laboratory NIRS technique and the conventional methods
(Aastveit and Marum, 1989). The NIRS analyses of commercial services
make predictions for a large number of quality characteristics which are
important for farmers. In Finland, the Valio dairy company provides
NIRS predictions, for example, predictions of the digestibility of organic
matter in dry matter (the D-value), neutral detergent fibre (NDF), iNDF,
crude protein and water-soluble carbohydrate (WSC) values of forage
for their contract farmers (http://valma.valio.fi/palvelut/).

In the Nordic countries' conditions, the feed quality of grass swards
changes rapidly in the primary growth, when the proportion of stems in
the yield increases (Nissinen et al., 2010). The OMD is reduced by more
than one percentage unit per day during the fastest development period
in the primary growth phase and the dry matter yield (DMY) increases
by 220–240 kg/ha/day (Nissinen et al., 2010). In the work of Rinne
(2000), the reduction of one percentage unit in the typical silage D-
value decreased the energy-corrected milk production of cows by
0.50 kg/day and, consequently, the profitability of the farm. In this
context, the timing of the harvest in the primary growth phase is very
important (Rinne, 2000; Kuoppala, 2010). Information about the var-
iation of the D-value within and among fields can simplify the man-
agement of the grass swards after harvesting, separating the forage by
quality levels into respective silos, which can facilitate the optimal use
of silage in feeding. In addition to feeding purposes, the nitrogen con-
centration (Ncont) in the yield is also an important parameter for sward
management as, together with information on the DMY, it indicates
how much of the applied fertiliser nitrogen was taken up by the sward.

Thereby, the Ncont helps to determine the fertiliser application rate for
the next harvest. Site-specific data on the yield, Ncont and nitrogen
uptake (NU) can provide information on the nitrogen availability from
soil and of the organic fertilisers for the sward.

Portable or field spectroradiometers (hyperspectral sensors) have
also been used to estimate forage quantity and quality parameters,
showing significant correlations between spectra and in situ vegetation
(Hensen and Schjoerring, 2003; Pullanagari et al., 2012). Zheng and
Chen (2018) investigated three stages of growth in a field with grass
and alfalfa using measurements from a spectrometer to estimate bio-
mass yield, NDF, acid detergent fibre and crude protein (CP). However,
laboratory-based NIRS approaches, manual height measurements and
hand-held spectrometers are not practical techniques for large areas or
for providing complete spatial coverage of a field. Alternatively, several
studies have shown the potential of using remote-sensing techniques to
estimate crop parameters (Mulla, 2013; Higgins et al., 2017). Recently,
drones (also referred to as unmanned aircraft systems and remotely piloted
aircraft systems) have emerged as an effective, fast and low-cost plat-
form for collecting remote-sensing data in agricultural applications
(Bendig et al., 2014; Li et al., 2016; Näsi et al., 2018). In the last two
decades, photogrammetric methods for dense 3D reconstruction based
on aerial or terrestrial images have greatly advanced due to the de-
velopment of computational technology and improvements in photo-
grammetric and computer-vision algorithms (Wu, 2013). These
methods have been successfully applied in agriculture, for example,
drones have been used to estimate biomass and detect individual plants.

Agricultural crop parameters have been estimated in various studies
using multispectral imagery data (Berni et al., 2009; Candiago et al.,
2015; Geipel et al., 2016) or hyperspectral imagery data (Capolupo
et al., 2015; Zarco-Tejada et al., 2013; Näsi et al., 2018). The combi-
nation of 3D features based on photogrammetry or laser scanning and
spectral image features has improved the estimation accuracy in several
studies, especially for the biomass estimation of barley (Bendig et al.,
2015; Näsi et al., 2018), winter wheat (Yue et al., 2017) and grass
swards (Viljanen et al., 2018).

Past research on the use of remote-sensing image data in agriculture
has mostly focused on biomass estimation (e.g. Bendig et al., 2014;
Candiago et al., 2015; Yue et al., 2017; Viljanen et al., 2018) and only a
few studies have explored quality parameters (Ali et al., 2016;
Knoblauch et al., 2017; Pullanagari et al., 2018) other than focusing on
nitrogen estimation (Li et al., 2016; Näsi et al., 2018). However, the
management of silage grass swards especially requires knowledge about
quality parameters in order to define the optimal harvesting time and
overall management of the production.

The objective of this work was to develop and assess a machine-
learning technique for the estimation of the quantity and quality of
grass swards based on drone spectral imaging and photogrammetry.
The contributions of this work are (i) the use of spectral and 3D features
in quantity and quality grass crop parameter estimations, (ii) the
comparison of RGB, multispectral and hyperspectral imaging–based
remote sensing techniques, (iii) the assessment of the estimated pre-
diction models from training data in order to estimate crop parameters
in an independent test site and (iv) the estimation and evaluation of
methods for different harvests and growths (primary growth and re-
growth).

2. Materials and methods

2.1. Study area

Data from four experimental grass sites of a research farm owned by
the Natural Resources Institute Finland (Luke) were used in this study.
The study sites were located in the municipality of Jokioinen in
southwest Finland (approximately 60° 48′ N, 23° 30′ E). One site was
located in the Ilmala area of Jokioinen and it was used for training
estimation models at the primary growth stage (PG_TR). The other
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three sites were in the Pellilä area of Jokioinen. In Pellilä, one site was
used as testing data for the primary growth (PG_TE) models. The two
remaining sites, which were located in different areas of the same field,
were used for the training and testing of the regrowth stage (RG_TR and
RG_TE, for the training and testing respectively).

The sward data PG_TR (Fig. 1a) was for a second-year timothy
meadow fescue (Phleum pratense and Festuca pratensis) crop, which was
managed as a silage production sward in 2016. The soil type was clay.
In spring 2017, a uniform part of the field was selected for the agri-
culture experiments and was divided into plots for the application of
different fertiliser rates. Fertiliser treatment was applied on the main
plot (plot size: 12 m × 3 m), and the harvest was taken from the sub-
plot on different dates. The experiment had a total of 96 plots (Fig. 1a),
which consisted of four replicates, six nitrogen fertiliser levels (0, 50,
75, 100, 125 and 150 kg ha−1) and four harvesting/measuring dates
(the 6th, 15th, 19th and 28th of June). The fertiliser application was
carried out on the 10th of May 2017 using an experimental surface
fertiliser spreader with a working width of 1.5 m (a tailor-made model),
manufactured at Luke. The manually moved spreader was designed to
provide accurate amounts of granulated fertiliser on the soil surface.
From each of the 96 plots, 2.6 m long samples were harvested using a
Haldrup forage plot harvester with 1.5 m cutting bar. In the primary
growth experiments, drone-based RGB and hyperspectral datasets were
collected on the same days as each harvest. More details of the PG_TR
data are presented by Viljanen et al. (2018).

The experimental grass field used for testing the primary growth
estimation models (PG_TE) was located approximately 1.2 km from the
PG_TR test site (Fig. 1b). The soil of the field was clay with 7.3% or-
ganic matter. The sward was a second-year sward, established on the

2nd of June in 2015 with a seed mixture composing of 67% timothy
fescue and 33% tall fescue. However, the stand composition was nearly
pure timothy in 2017. Test plots sized 15 m by 22 m were treated with
four different nitrogen fertiliser rates (0, 50, 100 and 150 kg N ha−1)
with two replicates for each. The whole trial was set up in a 120 m long
and 22 m wide rectangle (Fig. 1b). The spring nitrogen fertiliser was
applied on the 11th of May 2017. The test sward was harvested using
the same harvester and on the same dates as those for the training site,
but the harvested plot length ranged from 12.65 m to 13.4 m.

The experiments for the training and the testing sites for the re-
growth were established in the same field that was used for the testing
data for the primary growth (Fig. 1c). For the regrowth experiments,
the field was first fertilised for primary growth on the 5th of May 2017
(spring) using NPKS fertiliser (20-2-12-3) at a rate of 500 kg ha−1,
which provided 100 kg N ha−1 and was then harvested for silage on the
19th of June 2017. The fertiliser applications for the regrowth experi-
ment were carried out on the 22nd of June 2017. The nitrogen appli-
cation rates were 0, 25, 50, 75, 100, 125 and 150 kg N ha−1. In addition
to these seven nitrogen fertiliser application rates, two alternative ni-
trogen-source (ammonium sulphate and organic liquid nitrogen ferti-
liser) treatments, aiming to deliver 100 kg N ha−1, were carried out.
The plot size in this trial was 2.5 m by 20 m (Fig. 1c). On the two first
harvesting dates (the 25th of July and 1st of August), around 3 m long
samples of the plots were harvested each time using a Haldrup forage
plot harvester. On the third harvest date (the 15th of August), an ap-
proximately 10 m long sample was harvested. After the three harvest
dates, a total of 108 samples were collected. Drone flights were carried
out on the same day as the harvest, or one day before the harvest, ex-
cept for the cut on the 1st of August when the flight was carried out two

Fig. 1. An RGB orthomosaic and the location of harvesting dates for (a) the primary growth training area (PR_TR) (the orthomosaic is from a flight on the 28th of
June), (b) the primary growth testing area (PR_TE) and (c) the regrowth study area and plots used as training and testing data (RG_TR, RG_TE).
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days after the harvest (the 3rd of August) using the remaining part of
the plot that corresponded to the harvested area.

For the regrowth testing data (RE_TE), three 30 m by 20 m plots
(Fig. 1c) were fertilised on the 22nd of June with 25, 75 or
125 kg N ha−1 after the first cut (on the 19th of June 2017). For each
harvest date (on the 26th of July, the 1st of August and the 15th of
August 2017), one sample from each plot was harvested using a
Haldrup forage plot harvester. The length of the harvested area ranged
from 2.7 m to 3.75 m and the working width of the harvested area was
1.5 m. A representative sample (around 1 kg in fresh weight) was taken
from each plot harvest for the quantity and quality analyses. From the
nine independent test samples collected, we removed one sample from
the last harvest date with the highest nitrogen application since the
sample characteristics were out of the training data range; therefore,
eight independent test samples were available.

2.2. Reference field data

The idea of the experimental set up was to generate variation in the
study sward. General guidelines advise an application rate of
100 kg ha−1 for silage production in clay soil and a target D-value of
690 g/kg DM in the first harvest, which usually occurs close to the
heading of grass species.

The development of primary growth grass swards in Finland de-
pends on the accumulated temperature sum. The start of the growing
season in Jokioinen was late in 2017 (on the 5th of May) and the early
summer was cool. In 2017, the targeted D-value was reached around
the 19th of June in Jokioinen. Therefore the harvest and observation
dates on the 15th and 19th of June 2017 were around the optimum
harvest time. The first harvest on the 6th of June was at a very early
developmental stage of the sward, and on the 28th of June, the op-
timum harvest period had passed.

The zero‑nitrogen application sward was sparse and weak, parti-
cularly on the first observation dates for both the primary growth and
the regrowth. The highest nitrogen application rates – 125 and
150 kg N ha−1 at the PG_TR site, and 100, 125 and 150 kg N ha−1 in
Pellilä (PG_TE, and RG_TR and RG_TE) – produced a dense sward which
was susceptible to lodging, and this affected the growth of the stand

prior to the last harvesting dates in both the primary growth and the
regrowth. In addition, the highest nitrogen application rates seemed to
increase the share of meadow fescue in the sward on the latest har-
vesting dates at the PG_TR site. Otherwise, the swards predominantly
consisted of timothy. The training data for the regrowth was obtained
from a ‘NESTERAVINNE’ project experiment in which the effect of the
delayed application of slurry (liquefied animal manure) on sward
growth and quality was the main research topic. This resulted in a
longer than normal period from the harvest of the primary growth (on
the 19th of June) to the harvest of the regrowth. In our study, the
period was at five, six and eight weeks, with the three harvest dates of
the 25th of July, and the 1st and 15th of August 2017, while the normal
period is from four to six weeks. The weather conditions remained cool
and rainy during the regrowth period, and the fresh yields (FYs) and
DMYs obtained in the regrowth were high in this trial, as well as in
general in Finland in 2017.

Reference measurements included the FY, DMY and feeding quality
analysis. The samples collected from each harvested plot were weighed
to determine FY and were then chopped into 3–4 cm long pieces by a
Wintersteiger sample chopper (Model Hege 44), and the DMY was de-
termined after overnight drying at 105 °C in forced-air drying ovens (a
Memmert or Heraus). A similar sample for quality analyses was dried at
60 °C until dry. The feed quality analyses included predictions for the
Ncont, NDF, iNDF, the D-value and WSCs and they were carried out by
the Valio Ltd feed laboratory using the NIRS technique with Foss NIR
XDS equipment. The D-value parameter is directly related to metabo-
lised energy (ME) as a D-value (g/kg DM) multiplied by 0.016 provides
ME as MJ/kg DM. Ncont is related to CP as Ncont (g N/kg DM) mul-
tiplied by 6.25 gives the CP value (g/kg DM). The resulting field
measurements are presented in Tables 1 and 2.

The calibration set of the Valio Ltd NIRS analyser covers a wide
range of variation in all the quality parameters involved in this study,
which is necessary as we generated great variability in the test material
by using different nitrogen application rates and harvest times. The NU
by sward was calculated from both the Ncont in the DMY and the
amount of DMY.

The Finnish Feed Tables service (https://portal.mtt.fi/portal/page/
portal/Rehutaulukot/feed_tables_english) provides guideline values of

Table 1
Reference measurements for primary growth. Min: minimum; max: maximum; mean: average; std: the standard deviation of the attribute; FY: fresh yield; DMY: dry
matter yield; D-value: digestible organic matter in dry matter; iNDF: indigestible neutral detergent fibre; NDF: neutral detergent fibre; WSC: water-soluble carbo-
hydrates; Ncont: nitrogen concentration; NU: nitrogen uptake. PR_TR: primary growth training area; PR_TE: primary growth testing area (PR_TE).

FY (kg/ha) DMY (kg DM/ha) D-value (g/kg DM) iNDF (g/kg DM) NDF (g/kg DM) WSC (g/kg DM) Ncont (g N/kg DM) NU (N kg/ha)

PG_TR
6 June

Min 1022 336 734 27 435 104 22.56 7.79
Max 5975 1703 770 52 464 225 40.80 62.42
Mean 3921 1113 754 38 446 153 32.45 37.83
Std 1488 360 12 8 9 38 5.63 16.32

PG_TR
15 June

Min 2133 625 719 11 528 80 16.48 10.30
Max 17,143 3329 764 40 591 209 28.32 85.02
Mean 10,592 2258 734 30 566 126 22.26 52.62
Std 4268 746 13 6 17 40 3.85 22.84

PG_TR
19 June

Min 1716 531 652 50 522 76 14.40 7.64
Max 21,138 4349 724 104 614 203 25.92 100.18
Mean 12,691 2906 693 78 566 120 18.61 56.59
Std 5720 1168 18 13 23 38 2.86 27.50

PG_TR
28 June

Min 2614 856 632 81 515 99 11.84 10.41
Max 25,459 6135 695 128 599 246 19.52 105.69
Mean 16,979 4333 660 103 573 156 14.93 67.36
Std 7343 1611 18 13 22 42 2.35 30.58

PG_TE
15 June

Min 4796 1256 708 29 573 79 16 21.10
Max 18,783 3822 741 49 605 160 27.84 103.97
Mean 11,206 2408 721 41 591 108 21.66 54.39
Std 4440 816 12 6 11 31 4.33 25.97
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D-value and CP concentration for different harvesting time, in the pri-
mary growth and regrowth, considering the fertiliser application of
100 kg N ha−1 for grass swards cultivated according to recommended
agricultural practice. The D-values obtained in the reference data in
both the primary growth and in the regrowth covered the whole range
presented in the Finnish Feed Tables well (see Tables 1 and 2). For
nitrogen concentration, the range in the reference data was wider than
in the guidelines, which was expected as the applied nitrogen fertiliser
rate ranged from 0 to 150 kg N ha−1 while in practical farming this
range varies from 75 to 100 kg N ha−1 for both the primary and re-
growth stands.

The relation between biomass and digestibility can be seen in Fig. 2,
which shows the primary growth and regrowth field measurements for
the DMY and the D-value for the nitrogen fertilisation level N100. These
are negatively correlated in the primary growth as usually, as the
quantity increases, the quality – measured as a D-value – decreases,
which occurred also for the regrowth in this study.

The Pearson correlation coefficients (PCCs) of the primary growth
reference data parameters (Fig. 3) also show that the biomass para-
meters (FY, DMY) and the D-value were strongly negatively correlated.

The D-value attribute was also inversely correlated with the iNDF (PCC:
−0.95). The negative correlation of the D-value with the FY and DMY,
as well as the iNDF, is the major issue to be monitored in order to
achieve a balance between an adequate yield and adequate quality (see
e.g. Rinne, 2000; Nissinen et al., 2010). In the regrowth measurements,
the correlations between most of the attributes were comparable to the
primary growth, but Ncont presented smaller correlation between
biomass, D-value, iNDF and NDF and higher correlation with WSC and
NU.

2.3. Remote-sensing data sets

The acquisition of remote-sensing datasets was carried out using a
drone assembled by the Finnish Geospatial Research Institute (FGI). The
FGI's drone has a Gryphon Dynamics quadcopter frame with detachable
arms and it is equipped with a Pixhawk 1 autopilot flight control unit
running Arducopter firmware. The drone has been designed to operate
using different sensors and is able to fly for 25 min carrying a payload
of 4 kg (Fig. 4).

The drone was equipped with an NV08C-CSM L1 single-frequency
global navigation satellite system (GNSS) receiver (NVS Navigation
Technologies Ltd., Montlingen, Switzerland), a Raspberry Pi single-
board computer (Raspberry Pi Foundation, Cambridge, United
Kingdom), a 36.4 megapixel Sony A7R (RGB) camera (Sony
Corporation, Minato, Tokyo, Japan) with a Sony FE 35 mm f/2.8 ZA
Carl Zeiss Sonnar T* lens (Sony Corporation, Minato, Tokyo, Japan)
and a hyperspectral 2D frame camera (the prototype FPI2012b) based
on a Fabry-Pérot interferometer (FPI) adjustable filter, which acquires
spectral bands using a time sequence–based process (i.e. the acquisition
is not simultaneous for all bands of the same hyperspectral cube)
(Oliveira et al., 2016; Honkavaara et al., 2017). The FPI camera system
weighs < 700 g. The image size is 1024 × 648 pixels with a pixel size
of 11 μm and the nominal focal length is 10.9 mm (Mäkynen et al.,
2011; Honkavaara et al., 2013). The prototype FPI2012b was config-
ured to capture hyperspectral images on 36 bands in the range of
500–900 nm (Table 3).

The RGB and the hyperspectral cameras were triggered to capture
images at two-second intervals. The PPS (pulse-per-second) signal from
the GNSS unit and synchronisation pulses were recorded for each ex-
posure of each camera (i.e. for each band of the hyperspectral camera)
using the Raspberry Pi 3 GPIO. The PPS signal was used to calibrate the

Table 2
Reference measurements for regrowth. Min: minimum; max: maximum; mean: average; std.: standard deviation of the attribute; FY: fresh yield; DMY: dry matter
yield; D-value: digestible organic matter in dry matter; iNDF: indigestible neutral detergent fibre; NDF: neutral detergent fibre; WSC: water-soluble carbohydrates;
Ncont: nitrogen concentration; NU: nitrogen uptake. RG_TR: regrowth training area; and RG_TE: regrowth testing area.

FY(kg/ha) DMY
(kg DM/ha)

D-value
(g/kg DM)

iNDF
(g/kg DM)

NDF
(g/kg DM)

WSC
(g/kg DM)

Ncont (g N/kg
DM)

NU (N kg/ha)

RG_TR
25 July

Min 1379 368 670 13 442 50 17.92 7.54
Max 24,598 3860 756 82 573 242 33.12 124.12
Mean 13,685 2546 717 44 533 117 24.10 64.37
Std 6664 1017 21 19 37 61 4.23 32.82

RG_TR
1 August

Min 2000 606 668 15 426 61 15.84 11.87
Max 26,909 4696 748 89 612 275 28.80 129.99
Mean 16,067 3339 697 55 547 129 20.76 71.94
Std 7056 1232 24 21 47 65 3.48 33.22

RG_TR
15 August

Min 2810 917 618 53 440 89 12.96 12.77
Max 32,391 7229 718 137 609 294 20.96 132.94
Mean 20,223 4744 655 99 558 166 15.58 75.16
Std 9003 1683 24 18 46 58 2.18 30.78

RG_TE
(25 July, 1 August, 15
August)

Min 7843 2073 631 57 464 89 14.08 37.83
Max 36,135 8047 714 114 575 207 28.48 150.60
Mean 19,254 4360 674 85 535 141 20.07 84.77
Std 9284 2053 29 21 36 47 4.81 35.59

Fig. 2. The reference measurements for the primary growth and regrowth for
the DMY (dry matter yield) and the D-value (organic matter in dry matter) for
the nitrogen fertilisation level N100. Standard deviation is shown as an error
bar.
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timestamps to GPS time at a microsecond resolution. Afterwards, the
data from the GNSS positions for each camera were computed using
post-processed kinematic (PPK) in RTKLIB software (RTKLIB version
2.4.2, open source, Raleigh, NC, USA) (RTKLIB, 2018). Observation
data from the FinnRef stations of the National Land Survey of Finland
(NLS) RINEX service (NLS, 2018) was used in the PPK processing.

Table 4 presents the flight parameters and weather conditions of the
remote-sensing datasets captured during the primary growth,
throughout June of 2017, and during the regrowth, from the end of July
to the middle of August in 2017.

The flight heights of the campaigns in Jokioinen were 50 m, except
for one flight (PG_TR_20170615), giving a ground sampling distance
(GSD) of 5 cm for the hyperspectral data and 0.64 cm for the RGB data.
The flight PG_TR_20170615 was at a height of 30 m, thus the GSDs for
the hyperspectral data and for the RGB data were 3 cm and 0.39 cm
respectively. The flight speed was 2 m/s in all flights. Image overlaps
were about 84–87% in the forward direction and 65–81% between
flight lines.

2.4. Remote-sensing data processing

2.4.1. Geometric processing
The accurate geometric processing of image datasets is essential

when combining data collected on different flights, dates and/or from
different sources. A rigorous photogrammetric workflow was carried
out for all datasets, aiming to determine the image exterior orientation
parameters (EOPs), camera interior orientation parameters (IOPs), 3D

point clouds and orthomosaics. The photogrammetric workflow was
done using Agisoft PhotoScan Professional software (version 1.3.4,
Agisoft LLC, St. Petersburg, Russia). The image alignment processes of
each dataset were performed using a high quality setting, with 40,000
key points and 4000 tie points per image; 3D coordinates of each
camera exposure – collected by the on-board GNSS receiver and ap-
proximate values of the camera IOPs (principal distance, principal
point, and radial and tangential lens distortions) – were inserted in
Agisoft PhotoScan as initial values for the alignment adjustment (self-
calibration). For each test site, five ground control points (GCPs) were
surveyed using a Trimble R10 RTK DGNSS with 0.03 m horizontal ac-
curacy and 0.04 m vertical accuracy. These GCPs were manually
measured in the images. We considered the a priori standard deviation
to be ± 0.005 m for GCPs and ± 5 m for the image coordinates. After
the initial alignment processing, tie point outliers were removed using

Fig. 3. The correlations for the reference
data of the primary growth measurements.
FY: fresh yield; DMY: dry matter yield; D-
value: digestible organic matter in dry
matter; iNDF: indigestible neutral detergent
fibre; NDF: neutral detergent fibre; WSC:
water-soluble carbohydrate; Ncont: ni-
trogen concentration; NU: nitrogen uptake.

Fig. 4. The drone and payload.

Table 3
The spectral settings of the hyperspectral frame camera prototype FPI2012b.
L0: central wavelength; FWHM: full width at half maximum.

L0 (nm): 512.3, 514.8, 520.4, 527.5, 542.9, 550.6, 559.7, 569.9, 579.3, 587.9, 595.9,
604.6, 613.3, 625.1, 637.5, 649.6, 663.8, 676.9, 683.5, 698.0, 705.5, 711.4,
717.5, 723.8, 738.1, 744.9, 758.0, 771.5, 800.5, 813.4, 827.0, 840.7, 852.90,
865.3, 879.6, 886.5

FWHM (nm): 14.81, 17.89, 20.44, 21.53, 19.50, 20.66, 19.56, 22.17, 17.41, 17.56,
21.35, 20.24, 25.30, 27.63, 24.59, 27.86, 26.75, 27.00, 28.92, 24.26, 24.44,
25.12, 27.45, 27.81, 26.95, 25.56, 27.78, 27.61, 23.82, 28.28, 26.61, 26.85,
27.54, 28.29, 25.89, 23.69
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automatic tools based on re-projection residuals and the standard de-
viations of the tie point 3D coordinates, and in some cases, outlier
points were manually removed (see more details in the work of
Nevalainen et al., 2017; Näsi et al., 2015).

The alignment step was done as described above for the RGB da-
tasets, and for the RGB and three bands of the FPI hyperspectral images
(RGBFPI; band 5: L0 = 542.9 nm; band 11: L0 = 595.9; band 14:
L0 = 625.1 nm). The root-mean-square errors (RMSEs) of the residuals
in the image coordinates (re-projection errors) estimated for the
RGBFPI blocks were 0.35–0.74 pixels and the RMSEs of the differences
at GCPs varied from 0.21 to 1.23 cm in horizontal and vertical direc-
tions (Table 5).

Once the RGB images were aligned, dense 3D point clouds were
generated by PhotoScan using the ‘High’ and ‘Mild’ depth filtering
settings. Next, the 3D point clouds were interpolated in order to gen-
erate digital surface models (DSMs) and orthomosaics. The outputs of
the geometric processing were camera IOPs and EOPs, sparse point
clouds (tie points), DSMs and RGB orthomosaics. The RGB orthomo-
saics were transformed from digital values (DNs) to reflectance values
using the empirical line method (Smith and Milton, 1999) with three
reflectance panels and an exponential function. Canopy height models
(CHMs) were created from the photogrammetric DSMs of each dataset
using the procedure described by Viljanen et al. (2018). We generated
the digital terrain model (DTM) by classifying the ground points auto-
matically using PhotoScan's ‘classify ground points’ tool. The para-
meters selected for all datasets were: a 3 m cell size, 0.5° for the max-
imum angle and a maximum distance of 2.0 cm. These parameters were
selected based on visual inspection of the RGB orthomosaics. After the
points were classified, ground points were interpolated, generating the
DTMs of each area at a resolution of 1 cm. The DTMs and DSMs were
exported as TIFF images and imported into the QGIS (version 2.18.14,
Open-source, Raleigh, NC, USA) software to generate the CHMs by
subtracting the DTM from the DSM.

The geometric processing in PhotoScan resulted in orientations for
three reference bands of the FPI hyperspectral datasets. In order to
generate orthomosaics for all bands, the EOPs of the remaining bands
were estimated using the 3D band-matching approach developed by
Honkavaara et al. (2017). From the three bands used in the geometric
processing, the 542.9 nm and 800.5 nm bands were selected as re-
ference bands for the 3D band matching; these bands are simulta-
neously acquired. The 542.9 nm band was utilised as a reference for the
bands in the visual range and the 800.5 nm band was used for the bands
in the NIR range. Additionally to the reference bands' EOPs and the
camera's IOPs estimated in the geometric process, a sparse point cloud
(tie points) with about 1000 points per image was also an input for the
3D band-matching procedure. The parameters in the 3D band-matching
computation were selected based on the work of Honkavaara et al.
(2017). The averages of the RMSEs of the image residuals after the band
matching were 6.80–7.96 μm, indicating an accuracy better than one
GSD of alignment, and were consistent with the results of Honkavaara
et al. (2017).

2.4.2. Radiometric processing
The radiometric values of the same point can vary due to many

physical issues at the moment of data acquisition, such as atmospheric
effects, variable weather conditions and sensor non-uniformity.
Furthermore, values are anisotropic as a function of the illumination
and viewing direction, which can be modelled using the bidirectional
reflectance distribution function (BRDF) (Schaepman-Strub et al.,
2006). As a result, radiometric calibration and correction are crucial in
order to obtain uniform and comparable imagery data for temporal
analysis.

The radiometric processing of the hyperspectral images followed the
approach proposed and developed by Honkavaara et al. (2013, 2018),
which includes sensor corrections, atmospheric correction, correction
for the radiometric non-uniformities caused by illumination variations,

Table 4
Flight parameters for each dataset: date, time, weather, sun azimuth, solar elevation. FH: flight height; FL: number of flight lines; PR_TR: primary growth training
area; PR_TE: primary growth testing area; RG_TR: regrowth training area; and RG_TE: regrowth testing area.

Dataset Date Time (GNSS) Weather Sun azimuth (°) Solar elevation (°) FH (m)

Training data – primary growth
PG_TR_20170606 6 June 12:26 to 12:34 Varying 217.85 51.28 50
PG_TR_20170615 15 June 08:59 to 09:14 Sunny 150.21 49.96 30
PG_TR_20170619 19 June 09:09 to 09:26 Varying 153.34 50.58 50
PG_TR_20170628 28 June 07:13 to 07:29 Sunny 117.47 40.45 50

External testing data – primary growth
PG_TE_20170615 15 June 13:22 to 13:35 Cloudy 241.13 48.91 50

Training and external testing data – regrowth
RG_TR20170724/RG_TE20170724 24 July 08:55 to 09:18 Cloudy 151.24 43.51 50
RG_TR20170803/RG_TE20170803 3 August 09:59 to 10:22 Varying 174.06 43.50 50
RG_TR20170814/RG_TE20170814 14 August 11:43 to 12:06 Varying 214.54 50.53 50

Table 5
Bundle block adjustment dataset parameters: GSD: ground sampling distance; FPI: fabry-Perót interferometer hyperspectral camera, No: number of images; Rep.
error: re-projection error; GCPs: ground control points; and RMSE: the root mean square error of X, Y and Z coordinates; PR_TR: primary growth training area; PR_TE:
primary growth testing area; RG_TR: regrowth training area; and RG_TE: regrowth testing are.

Flight No. of FPI cubes No. of RGB images Rep. error (pix) GCPs RMSE RGB GCPs RMSE RGBFPI

RGB RGBFPI X (cm) Y (cm) Z (cm) X (cm) Y (cm) Z (cm)

PG_TR_20170606 111 156 0.78 0.57 0.64 0.41 1.47 0.79 0.80 0.97
PG_TR_20170615 158 174 0.59 0.36 0.28 0.38 0.75 0.27 0.27 0.33
PG_TR_20170619 226 320 1.12 0.48 0.58 1.31 0.27 0.56 1.15 0.22
PG_TR_20170628 211 350 1.25 0.51 0.32 0.52 1.61 0.26 0.47 0.21
PG_TE_20170615 158 197 0.33 0.37 0.81 1.18 0.51 0.83 1.23 0.55
PG_TR20170724/PG_TE20170724 291 555 0.76 0.66 0.61 0.79 1.52 0.49 0.69 1.23
PG_TR20170803/PG_TE20170803 316 591 0.89 0.74 0.90 0.92 0.51 0.85 0.83 0.48
PG_TR20170814/PG_TE20170814 316 519 0.69 0.66 0.27 1.22 0.22 0.33 1.18 0.35
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BRDF correction and absolute reflectance transformation. The sensor
corrections included a photon response non-uniformity (PRNU) cor-
rection, done in the laboratory, and dark signal correction using an
image obtained with the lens covered before the start of each flight.
Both methods were performed using software produced by VTT (VTT
Technical Research Centre of Finland Ltd) (Mäkynen et al., 2011). In-
house radiometric block adjustment software, RadBA (Honkavaara
et al., 2013; Honkavaara and Khoramshahi, 2018), was used for the
other radiometric corrections and generation of the reflectance ortho-
mosaics for each spectral band. The algorithm attempts to determine
the radiometric model parameters by minimising the differences be-
tween the observed and modelled DNs of radiometric tie points in the
overlapping images. For the radiometric modelling, the solar illumi-
nation geometry and, if available, irradiance information registered
during the data acquisition are used. RadBA software can also integrate
the DN multiple view observations of reflectance panels in the adjust-
ment process for each band for the reflectance transformation. To en-
able the reflectance transformation, panels sized 1 m × 1 m, with the
nominal reflectance of 0.03, 0.10 and 0.50, were positioned near the
drone take off location. Images affected by cloud shadow were elimi-
nated from the process. We used relative and BRDF corrections for the
blocks captured under sunny conditions and only relative corrections
for datasets captured in cloudy weather (Table 6). The processing
provided uniform reflectance orthomosaics, as can be seen in Figs. 5, 6
and 7.

2.5. The extraction of features from the remote-sensing datasets

Spectral vegetation indices and 3D features were extracted from the
hyperspectral and RGB mosaics and DSMs (Table 6). From the hyper-
spectral data, 35 bands were used to extract spectral features (HS_b).
Additionally, the hyperspectral data were used to compute 11 spectral
indices (HS_i). From the RGB data, three bands were used as features
(RGB_b), in addition to eight spectral indices computed from the RGB
bands and CHMs (RGB_i) and four multispectral vegetation indices
(MS_i) calculated using two bands of the hyperspectral data. Table 6
lists the vegetation indices used. The 3D features were calculated using
the CHMs generated from the RGB images (RGB_3D) for each dataset. A
shapefile containing polygons of each plot's boundary, considering a
margin of 0.25 m to avoid possible border effects, guided the feature-
extraction process from the orthomosaics in the QGIS software (version
2.18.15, open source, Raleigh, NC, USA) using the ‘zonal statistics’ tool.
The 3D features were obtained using a script implemented in Matlab
software (version 2016b, MathWorks, Natick, MA, USA).

The correlations (PCCs) between each physical measurement and
features extracted from the remote-sensing datasets of the primary

growth (Fig. 8) and regrowth (Fig. 9) show that the quantity attributes
FY and DMY were highly correlated with several extracted features,
such as 3D features, multispectral-3D vegetation indices (PCCs from
0.76 to 0.91), RGB indices (RGBI, GRVI and ExG) (PCCs from 0.67 to
0.87), multispectral vegetation indices (PCCs from 0.71 to 0.91), hy-
perspectral green- to red-edge bands (PCCs from −0.72 to −0.81) and
hyperspectral spectral NIR bands (bands 744.9 nm to 886.5 nm; PCCs
from 0.72 to 0.89), and hyperspectral indices (PCCs from 0.69 to 0.89).
Similar results were observed for the NU, iNDF and NDF. The D-value
demonstrated similar PCCs to the FY and DMY but with inverse cor-
relations (Fig. 8b). In the regrowth, the PCCs for the FY, DMY, iNDF,
NDF and NU attributes decreased in the bands of the red-edge region in
comparison with the primary growth. The WSC parameter presented
smaller PCC values in the visible range but higher values of negative
correlation in the NIR and hyperspectral indices while the D-value
presented smaller correlations in the NIR range than in the primary
growth. The Ncont parameter also had higher PCCs in the NIR bands
and hyperspectral indices.

2.6. Estimation process and quality assessment

The estimation process used in this study is based on the methods
proposed by Näsi et al. (2018) and Viljanen et al. (2018). Random forest
(RF) and multiple linear regression (MLR) algorithms were used as
estimators and the results were compared.

The RF is an ensemble learning technique introduced by Breiman
(2001). The RF has been used in several remote-sensing fields because it
can provide accurate predictions for classification, regression and sev-
eral different machine-learning problems (Belgiu and Drăguţ, 2016).
Studies have indicated that RF is insensitive to the presence of irrele-
vant predictors and that variable reduction does not impact sig-
nificantly on the performance (Heung et al., 2014; Li et al., 2017). The
RF's implementation in Weka software (Weka 3.8.1, University of
Waikato) was used in the estimation phase of the grass parameters for
feature selection and for validation. The number of decision trees was
set to 500 and other parameters were set to their defaults.

MLR is a method that attempts to estimate the parameters of the
model that describes the relationship between two or more independent
variables and a response variable by fitting a linear equation to the
observed data, often using the least squares method. We used the MLR
implementation in Weka (Weka 3.8.1, University of Waikato). In Weka,
the selection of the features model was done using a backward elim-
ination method called ‘M5’, wherein the attribute with the smallest
standardised coefficient is removed until no improvements are observed
in the Akaike information criterion (Akaike, 1974).

Multiple feature combinations were formed based on RGB and

Table 6
An overview of different features sets. The equations of vegetation indices are given by Viljanen et al. (2018) and Näsi et al. (2018).

Feature set labels Description N of features

RGB_3D 3D features based on canopy height models (CHMs) from RGB bands: mean height, minimum height, maximum height, standard deviation
height, (50, 70, 80, 90th) percentile

8

RGB_b Bands: Red, Green, Blue 3
RGB_i Vegetation indices using RGB bands and CHMs: Green Red Vegetation Index (GRVI), Tucker (1979); Modified Green Red Vegetation Index

(MGRVI), Bendig et al. (2014); Red Green Blue Vegetation Index (RGBVI), Bendig et al. (2015); Excess Green Index (ExG), Woebbecke et al.
(1995); Excess Red Index (ExR), Meyer et al. (1999); Excess GreenRed Index (ExGR), Neto (2004); Grassland Index (GrassI), Bareth et al.
(2015); Excess Green Combined with CHM (ExG + CHM), Viljanen et al. (2018);

8

MS_i Vegetation indices using two spectral bands of hyperspectral camera: Normalised Difference Vegetation Index (NDVI), Rouse et al., 1974;
Ratio Vegetation Index (RVI), Pearson and Miller (1972); Modified Soil-Adjusted Vegetation Index (MSAVI), Qi et al. (1994); Optimisation of
Soil-Adjusted Vegetation Index (OSAVI), Rondeaux et al. (1996);

4

HS_b The spectral bands of a hyperspectral camera (Table 3) 35
HS_i Spectral indices based on a hyperspectral camera: NDVI, OSAVI, Ratio Difference Vegetation Index (RDVI), Roujean and Breon (1995); red-

edge inflection point (REIP), Guyot and Baret (1988); Green Normalised Difference Vegetation Index (GNDVI), Gitelson et al. (1996); Modified
Chlorophyll Absorption Ratio Index (MCARI), Daughtry et al. (2000); Modified Triangular Vegetation Index (MTVI), Haboudane et al. (2004);
MERIS terrestrial chlorophyll index (MTCI), Dash and Curran (2004); Chlorophyll index green (Cl-red-edge), Gitelson et al. (2003);
Chlorophyll index red-edge (Cl-green), Gitelson et al. (2003); Photochemical Reflectance Index (PRI[512.531]), Hernández-Clemente et al.
(2011).

11

R.A. Oliveira, et al. Remote Sensing of Environment 246 (2020) 111830

8



hyperspectral images, vegetation indices and CHMs in order to assess
the performance of various available sensors with different spectral
resolutions. A description of the feature combinations used in our tests
is presented in Table 7. The 3D + RGB_b + RGB_i + MS_i set denotes a
multispectral camera simulation since it includes RGB bands, and red
and NIR spectral bands from the hyperspectral camera (central

wavelength L0 = 669.0 nm; full width at half maximum [FWHM] value
of 27.0 nm and near infrared L0 = 804.1 nm, FWHM: 28.3 nm). For the
MLR estimations, only the feature combination 3D + HS_b + HS_i,
representing the hyperspectral sensor, was used.

We built machine-learning estimators for the primary phase (see
Section 3.1) and regrowth phase (Section 3.2) due to the differences in
the test areas and properties of the crops. For each growth stage, two
experimental cases were studied. First, we considered a multitemporal
case (Sections 3.1.1 and 3.2.1) where all the dates of the studied growth
were used together to estimate different models accounting for the
feature sets described in Table 7. Second, the best performing feature
set of the multitemporal experiments was used to investigate the esti-
mation of quantity and quality parameters using each date separately
(Sections 3.1.2 and 3.1.2).

The quality assessment was quantified by calculating the PCC,
RMSE and normalised RMSE (RMSE%) (see the formulas in the work of
Viljanen et al., 2018). The leave-one-out cross-validation (LOOCV)
method was used to calculate the predicted RMSEs. Additionally, the
final RF models for each set of the feature combinations were tested
using the external testing data sets of different locations from the
training data set. The correlation coefficient of determination, RMSE
and RMSE% were also calculated as performance measures between the
observed and predicted values of the independent testing data. Table 8
summarises the experiment settings.

Fig. 5. Orthomosaics for the datasets of the training data site of the primary growth experiment for datasets (a) PG_TR_20170606, (b) PG_TR_20170615, (c)
PG_TR_20170619, (d) PG_TR_20170628. Bands: 29 (790.85 nm), 17 (656.34 nm), 6 (545.62 nm).

Fig. 6. An orthomosaic of the testing data site of the primary growth experi-
ment PG_TE_20170615. Bands: 29 (790.85 nm), 17 (656.34 nm), 6
(545.62 nm).
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3. Results

3.1. Machine-learning estimators for primary growth

3.1.1. Multi-temporal estimators
Tables 9 and 10 show the results of the RF and MLR models applied

to the training and testing data sets.
For the primary growth training datasets, the RF obtained correla-

tions of 0.96–0.98 and RMSE% values of 13.39–16% for biomass esti-
mation within different combinations (Tables 9, 10). Overall, the esti-
mation of the FY was more accurate than the estimation of the DMY.
The results were worst when only using 3D features (RMSE%: 23.3% for
FY and 21% for DMY; PCC: 0.93). The best results from the RF for FY
and DMY were obtained using the feature set 3D + HS_b + HS_i, with

PCCs of 0.98 and 0.97 respectively, and RMSE% values of 13.39% and
14.66% respectively. The feature set combining 3D and multispectral
features, 3D + RGB_b + RGB_i + MS_i, was only slightly worse with
RMSE% of 13.63% for FY and 15.11% for DMY (see Table 9). MLR
(3D + HS_b + HS_i) obtained the best accuracy for FY (PCC: 0.98;
RMSE%: 11.98%) and the same level for the DMY as with the RF.

Although the poorest RMSE% for FY and DMY estimation in the
training experiments, the 3D feature combination performed relatively
better than most of the combinations using spectral data with the
testing data set, achieving PCCs of 0.97 and 0.94, and RMSE% values of
23.23% and 33.58% for the FY and DMY respectively. The combination
3D + HS_b + HS_i provided the best accuracy of the testing estimations
with RMSE% of 20.79% and 23.02% for the FY and DMY respectively.
The results with MLR and the feature combination 3D + HS_b + HS_i

Fig. 7. Orthomosaics for the datasets of the training and testing data sites of the regrowth experiments (a) RG_TR20170724/RG_TE20170724, (b) RG_TR20170803/
RG_TE20170803, (c) RG_TR20170814/RG_TE20170814. Bands: 29 (790.85 nm), 17 (656.34 nm), 6 (545.62 nm).

Fig. 8. The Pearson correlation coefficients (PCC) for individual features and physical primary growth measurements of (a) the fresh yield (FY), dry matter yield
(DMY), neutral detergent fibre (NDF), indigestible neutral detergent fibre (iNDF) and nitrogen uptake (NU) and (b) the digestible organic matter in dry matter (the D-
value), water soluble carbohydrates (WSCs) and nitrogen concentration (Ncont).
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were clearly poorer than when using the RF.
For the quality estimations with the training datasets, using only 3D

features yielded the worst results for all parameters, and hyperspectral
features improved these values, as can be seen for 3D + HS_b + HS_i,
where the PCCs varied from 0.91 to 0.96 and the RMSE% values varied
from 2.11% to 20.73%. The combination 3D + RGB_b + RGB_i + MS_i
produced the best (or close to the best) correlations and RMSE%, with
PCC of 0.87–0.96 and RMSE% values of 2.76–25.44%. The hyper-
spectral feature sets 3D + HS_b + HS_i and HS_b + HS_i were best for
the estimation of the D-value, iNDF, WSC, Ncont and NU. At its best, the
D-value had a PCC of 0.94 and RMSE% of 1.98% (in the HS_b + HS_i
test). The addition of 3D features to hyperspectral features
(3D + HS_b + HS_i) did not significantly impact on the accuracies
obtained for the quality parameters in the HS_b + HS_i data. The D-
value and NDF parameters were the parameters with highest level of
accuracy from the estimations, with RMSE% values from 1.98% to
3.45% for the D-value and from 2.96% to 5.1% for the NDF. Regarding
the MLR(3D + HS_b + HS_i), the best RMSE% values were achieved for
the D-value (1.72%), iNDF (16.4%) and WSC (11.98%).

With the testing dataset, the feature set HS_b + HS_i yielded the
best accuracy for the D-value with RF having an RMSE% of 1.44% and
PCC of 0.81. The MLR(3D + HS_b + HS_i) provided slightly better

results with RMSE% of 1.25% and PCC of 0.7. The
3D + RGB_b + RGB_i features provided the highest accuracy in the
estimation of NDF (RMSE%: 6.65%). For the Ncont and NU parameters,
the 3D + RGB_b + RGB_i + MS_i combination provided the best es-
timations. The MLR(3D + HS_b + HS_i) resulted in the best RMSE%
values for the D-value, iNDF and WSC, compared to the results obtained
with the RF.

The relationship between the estimated and measured values for the
training and testing results of the 3D + HS_b + HS_i feature set with an
RF are plotted in Fig. 10, as well as the absolute RMSEs and the PCC
obtained for each parameter. In the training data, the biomass (FY and
DMY) was slightly underestimated for higher values (FY > 20,000 g/
kg DM; DMY > 4000 g/kg DM). The same can be observed for the
Ncont (> 35 g/kg DM). In the testing data, the D-value, NDF and NU
were underestimated and the opposite was found for the iNDF and
WSC, which were overestimated. Overall, the measured and estimated
values presented a very good fit; the correspondences appeared to be
the best for the FY, DMY, D-value, Ncont and NU; iNDF, NDF and the
WSC appeared to be the most biased values.

3.1.2. Estimators for each date
In order to analyse each harvest date of the primary growth

Fig. 9. The Pearson correlation coefficients (PCC) for individual features and physical regrowth measurements of (a) the fresh yield (FY), dry matter yield (DMY),
neutral detergent fibre (NDF), indigestible neutral detergent fibre (iNDF) and nitrogen uptake (NU) and (b) the digestible organic matter in dry matter (the D-value),
water soluble carbohydrates (WSCs) and nitrogen concentration (Ncont).

Table 7
The labels for the different feature combinations.

Feature combinations Feature sets included Case

3D RGB_3D 3D features from the RGB camera
3D + RGB_b + RGB_i RGB_3D RGB_b RGB_i 3D, spectral and intensity features from the RGB camera
3D + RGB_b + RGB_i + MS_i RGB_3D RGB_b MS_i 3D, spectral and intensity features from a simulated multispectral camera
HS_b + HS_i HS_i HS_b Spectral and indices features from the hyperspectral camera
3D + HS_b + HS_i HS_i HS_b RGB_3D 3D and spectral and indices features from the hyperspectral camera

Table 8
A summary of the experiments and results section. RF: random forest; MLR: multiple linear regression; LOOCV: leave-one-out cross-validation.

Data Section Experiment Feature sets Estimation method Assessment

Primary growth 3.1.1 Models estimated using all the harvest dates 3D
3D + RGB_b + RGB_i
3D + RGB_b + RGB_i + MS_i
HS_b + HS_i
3D + HS_b + HS_i

RF and MLR LOOCV, independent test data

3.1.2 One model estimated for each harvest date 3D + HS_b + HS_i RF LOOCV
Regrowth 3.2.1 Models estimated using all the harvest dates 3D

3D + RGB_b + RGB_i
3D + RGB_b + RGB_i + MS_i
HS_b + HS_i
3D + HS_b + HS_i

RF and MLR LOOCV, independent test data

3.2.2 One model estimated for each harvest date 3D + HS_b + HS_i RF LOOCV
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individually, we trained estimators for each date using the RF and
feature combinations 3D + RGB_b + RGB_i, 3D + RGB_b +
RGB_i + MS_i and 3D + HS_b + HS_i (see Tables 11 and 12) to re-
present different types of sensors. The FY and DMY quantity parameters
obtained similar RMSE% levels for the first, second and fourth harvests
while the best estimations were achieved on the third harvest date
(RMSE%: 9.9% and 8.27% for the FY and DMY respectively) (see Tables
11 and 12).

The accuracy of the model prediction was relatively higher (mostly
on the 15th of June) for all quantity and quality parameters (Fig. 11).
The best results for the quality parameters of the D-value, WSC and
Ncont were achieved on the second harvest date (PG_TR20170615)
with RMSE% values of 0.86%, 7.01% and 5.27% respectively using the
3D + HS_b + HS_i feature set. The quality of the predictions (absolute
RMSEs and PCCs) considering the different stages of growth can be
observed in Fig. 11. The difference between 3D + RGB_b + RGB_i,
3D + RGB_b + RGB_i + MS_i and 3D + HS_b + HS_i was smaller
when estimators were built for each date (Table 12) than for multi-
temporal models (Table 10), especially with the D-value and NDF.
Overall, the accuracies of the estimations were slightly improved for all
parameters in comparison to the results for multitemporal models (see
Section 3.1.1).

3.2. Machine-learning estimators for regrowth

3.2.1. Multi-temporal estimators
In the grass regrowth experiments, the PCC and RMSE% for biomass

estimation using the training data varied from 0.73 to 0.96 and 12.94%
to 33.02% respectively (Tables 13 and 14). From the RF tests, the
HS_b + HS_i combination obtained the best results for the FY estima-
tion (PCC: 0.94; RMSE%: 17.18%) and for the DMY (PCC: 0.95; RMSE
%: 15.23%). However, MLR(3D + HS_b + HS_i) outperformed the RF
results both for FY (PCC: 0.96; RMSE%: 12.94%) and for DMY (PCC:
0.96; RMSE%: 13.06%). Similar to the primary growth experiments, the
worst accuracies were obtained when using 3D features alone and when
using the 3D + RGB_b + RGB_i feature set. For the testing data, the
best results were obtained from the 3D + RGB_b + RGB_i + MS_i
features (FY: PCC: 0.69 and RMSE%: 26.61%; DMY: PCC: 0.72 and
RMSE%: 25.89%).

Regarding the quality parameters in the training data, spectral
features also improved the quality of the estimations, and the sets
HS_b + HS_i and 3D + HS_b + HS_i provided the best results. Similarly
to the primary growth results, the parameters of the D-value (RMSE%:
2.53–3.8%) and NDF (RMSE%: 4.61–5.54%) presented the best ac-
curacies for the regrowth. The RF achieved compatible accuracies and
correlations as the best results using MLR and outperformed MLR for

Table 9
The Pearson correlation coefficient (PCC) of the training data and testing data for the primary growth phase. FY: fresh yield; DMY: dry matter yield; D-value:
digestible organic matter in dry matter; iNDF: indigestible neutral detergent fibre; NDF: neutral detergent fibre; WSC: water-soluble carbohydrates; Ncont: nitrogen
concentration; NU: nitrogen uptake.

Features FY DMY D-value iNDF NDF WSC Ncont NU

Training data PCC
3D 0.93 0.93 0.78 0.73 0.87 0.67 0.71 0.83
3D + RGB_b + RGB_i 0.97 0.96 0.90 0.85 0.96 0.89 0.93 0.93
3D + RGB_b + RGB_i + MS_i 0.98 0.97 0.90 0.87 0.96 0.90 0.96 0.95
HS_b + HS_i 0.97 0.97 0.94 0.93 0.93 0.91 0.95 0.96
3D + HS_b + HS_i 0.98 0.97 0.93 0.92 0.94 0.91 0.96 0.96
MLR(3D + HS_b + HS_i) 0.98 0.97 0.95 0.95 0.95 0.92 0.93 0.96

Testing data PCC
3D 0.97 0.94 0.94 0.70 0.56 0.78 −0.75 0.84
3D + RGB_b + RGB_i 0.92 0.84 0.86 0.60 0.57 0.89 0.53 0.94
3D + RGB_b + RGB_i + MS_i 0.95 0.88 0.83 0.67 0.52 0.94 0.85 0.93
HS_b + HS_i 0.83 0.75 0.81 0.87 −0.32 0.88 0.47 0.89
3D + HS_b + HS_i 0.90 0.85 0.93 0.92 −0.07 0.88 0.43 0.89
MLR(3D + HS_b + HS_i) 0.90 0.83 0.70 0.12 0.00 0.96 0.95 0.91

Table 10
The normalised root-mean-square error (RMSE%) of the training data and testing data for the primary growth phase. FY: fresh yield; DMY: dry matter yield; D-value:
digestible organic matter in dry matter; iNDF: indigestible neutral detergent fibre; NDF: neutral detergent fibre; WSC: water soluble carbohydrates; Ncont: nitrogen
concentration; NU: nitrogen uptake.

Features FY DMY D-value iNDF NDF WSC Ncont NU

Training data RMSE%
3D 23.31 21.08 3.45 34.87 5.10 22.73 24.21 27.55
3D + RGB_b + RGB_i 15.63 16.05 2.48 26.86 2.96 14.14 12.90 18.61
3D + RGB_b + RGB_i + MS_i 13.63 15.11 2.46 25.44 3.00 13.47 10.75 14.90
HS_b + HS_i 14.63 15.24 1.98 19.48 3.70 12.35 10.98 13.93
3D + HS_b + HS_i 13.39 14.66 2.11 20.73 3.53 12.44 10.58 13.56
MLR(3D + HS_b + HS_i) 11.98 15.64 1.72 16.40 3.22 11.98 13.18 14.68

Testing data RMSE%
3D 23.23 33.58 4.01 82.92 7.45 22.84 37.40 33.31
3D + RGB_b + RGB_i 40.81 50.60 5.29 99.84 6.65 35.82 17.22 25.50
3D + RGB_b + RGB_i + MS_i 24.12 35.72 3.95 78.36 6.71 37.88 12.49 19.02
HS_b + HS_i 36.80 31.56 1.44 37.79 12.87 39.89 19.71 31.30
3D + HS_b + HS_i 20.79 23.02 2.77 66.95 9.32 41.81 17.77 31.23
MLR(3D + HS_b + HS_i) 52.93 36.56 1.25 17.26 18.67 13.25 56.65 25.64
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the D-value, iNDF and NDF. For the testing data, the sets 3D and
3D + RGB_b + RGB_i outperformed the other combinations in the
estimations of the D-value and iNDF. MLR(3D + HS_b + HS_i)
achieved better results than the RF for most of the quality parameters.

The distributions of the attributes predicted in the training and
testing data, using RF with the 3D + HS_b + HS_i feature set versus the
reference values of the field samples are presented in Fig. 12. It can be
seen that the D-value was overestimated for the testing data and the
predicted values for the training data were underestimated for the high
values. In particular, the iNDF and NU of the test datasets were un-
derestimated.

3.2.2. Estimators for each date
RF models with 3D, RGB, multispectral and hyperspectral features

were used to estimate the quantity and quality of regrowth data for
individual dates. The FY parameter presented similar RMSE% values for
each separate date and the best results were found on the third har-
vesting date (RG_TR20170814) (PCC: 0.95; RMSE%: 14.45%). For the
DMY, the second harvesting date (RG_TR20170803) yielded the best
accuracies (PCC: 0.97; RMSE%: 9.97%) (Tables 15 and 16). Each fea-
ture set achieved a similar level of accuracy for each date, but
3D + HS_b + HS_i provided the best accuracies for the biomass and
quality parameters on all dates. Overall, the best accuracies for quality
parameters were on the second harvesting date (RG_TR20170803).

Fig. 10. The relationship between the estimated and measured values for the training and testing data for the primary growth phase using random forest estimation
method with the 3D + HS_b + HS_i feature combination. FY: fresh yield; DMY: dry matter yield; D-value: digestible organic matter in dry matter; iNDF: indigestible
neutral detergent fibre; NDF: neutral detergent fibre; WSC: water-soluble carbohydrates; Ncont: nitrogen concentration; NU: nitrogen uptake; RMSE: absolute root-
mean-square error; R: Pearson correlation coefficient.

Table 11
The Pearson correlation coefficient of the training data for the primary growth phase for each harvesting date using the 3D + HS_b + HS_i feature combination. FY:
fresh yield; DMY: dry matter yield; D-value: digestible organic matter in dry matter; iNDF: indigestible neutral detergent fibre; NDF: neutral detergent fibre; WSC:
water-soluble carbohydrates; Ncont: nitrogen concentration; NU: nitrogen uptake.

FY DMY D-value iNDF NDF WSC Ncont NU

PG_TR20170606
3D + RGB_b + RGB_i 0.93 0.89 −0.08 −0.02 0.79 0.87 0.82 0.87
3D + RGB_b + RGB_i + MS_i 0.96 0.92 −0.09 −0.04 0.80 0.91 0.88 0.93
3D + HS_b + HS_i 0.95 0.94 −0.10 0.05 0.73 0.93 0.91 0.94

PG_TR20170615
3D + RGB_b + RGB_i 0.95 0.95 0.85 0.12 0.80 0.97 0.89 0.94
3D + RGB_b + RGB_i + MS_i 0.95 0.95 0.86 0.17 0.81 0.97 0.94 0.95
3D + HS_b + HS_i 0.96 0.95 0.86 0.30 0.79 0.98 0.95 0.96

PG_TR20170619
3D + RGB_b + RGB_i 0.97 0.98 0.51 0.49 0.68 0.89 0.83 0.97
3D + RGB_b + RGB_i + MS_i 0.97 0.98 0.51 0.47 0.68 0.87 0.83 0.97
3D + HS_b + _i 0.98 0.98 0.55 0.48 0.73 0.91 0.83 0.97

PG_TR20170628
3D + RGB_b + RGB_i 0.96 0.95 0.76 0.69 0.72 0.86 0.84 0.94
3D + RGB_b + RGB_i + MS_i 0.97 0.95 0.76 0.70 0.73 0.88 0.86 0.95
3D + HS_b + HS_i 0.97 0.95 0.79 0.72 0.74 0.88 0.88 0.95
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Compared with the primary growth results (see Section 3.1.2), the re-
growth results showed higher RMSE% values for both quantity and
quality parameters. The relationship between the estimated and mea-
sured values for the training data of the regrowth stage for each date
shows that for the data RG_TR20170814, the DMY, Ncont and NU were
underestimated for high values (see Fig. 13).

4. Discussion

In order to investigate the potential of drone-based photogrammetry
and spectral imaging in silage grass sward quality and quantity esti-
mation, controlled grass sward trial sites were established for the

primary growth and regrowth phases of grass, and these were used to
develop models for estimating grass parameters using drone-based re-
mote-sensing data. The accuracies of estimating the quantity and
quality of the yield were at similar levels to those obtained in previous
studies using conventional techniques (Rinne, 2000; Kuoppala, 2010;
Nissinen et al., 2010). The representativeness of the datasets used in
this study for practical farming situations differed. In the primary
growth training dataset, harvest for silage at the first reference mea-
surements (on the 6th of June) was too early, and the last harvesting
date (the 28th of June) was too late as the stand was heading heavily
and was also lodged at the highest nitrogen application rates. The
harvest dates of the 15th and 19th of June represented well the

Table 12
The normalised root-mean-square error of the training data for the primary growth phase for each harvesting date using the 3D + HS_b + HS_i feature combination.
FY: fresh yield; DMY: dry matter yield; D-value: digestible organic matter in dry matter; iNDF: indigestible neutral detergent fibre; NDF: neutral detergent fibre; WSC:
water soluble carbohydrates; Ncont: nitrogen concentration; NU: nitrogen uptake.

FY DMY D-value iNDF NDF WSC Ncont NU

PG_TR20170606
3D + RGB_b + RGB_i 14.27 14.92 1.65 22.82 1.19 11.99 9.81 20.71
3D + RGB_b + RGB_i + MS_i 11.10 12.49 1.66 22.99 1.17 10.28 8.00 16.13
3D + HS_b + HS_i 11.38 11.24 1.76 23.24 1.33 9.14 6.97 14.46

PG_TR20170615
3D + RGB_b + RGB_i 12.82 10.65 0.89 21.25 1.78 7.75 7.79 14.78
3D + RGB_b + RGB_i + MS_i 12.27 10.75 0.88 20.94 1.75 7.75 5.94 13.72
3D + HS_b + HS_i 11.66 10.39 0.86 19.86 1.83 7.01 5.27 12.36

PG_TR20170619
3D + RGB_b + RGB_i 11.08 8.89 2.26 14.67 2.97 14.46 8.51 11.92
3D + RGB_b + RGB_i + MS_i 10.50 9.05 2.25 14.80 2.98 15.30 8.45 12.30
3D + HS_b + HS_i 9.90 8.27 2.14 15.10 2.73 13.04 8.54 12.45

PG_TR20170628
3D + RGB_b + RGB_i 12.74 11.72 1.75 9.27 2.68 13.58 8.48 15.83
3D + RGB_b + RGB_i + MS_i 10.88 11.46 1.74 9.12 2.62 12.52 8.02 14.12
3D + HS_b + HS_i 11.48 11.50 1.66 8.93 2.58 12.81 7.28 14.46

Fig. 11. The relationship between the estimated and measured values for the training data for the primary growth phase, separated by date using random forest
estimation method with the 3D + HS_b + HS_i feature combination. FY: fresh yield; DMY: dry matter yield; D-value: digestible organic matter in dry matter; iNDF:
indigestible neutral detergent fibre; NDF: neutral detergent fibre; WSC: water-soluble carbohydrates; Ncont: nitrogen concentration; NU: nitrogen uptake; RMSE:
absolute root-mean-square error; R: Pearson correlation coefficient.
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ordinary primary growth harvest situation in Finland, particularly at
75–125 kg N ha−1 rates. In the regrowth data, the harvest taken on the
26th of July and the 1st of August represented the best practical silage
production situation. On the last harvest date (the 15th of August), the
lowest leaves in the densest swards with high nitrogen application rates
had started to die, which resulted in poor digestibility in the reference
analyses (Virkajärvi et al., 2012).

We separated the estimation processes of the primary and regrowth
phases due to the differences in the test areas and in the properties of
the crops. The best (or close to the best) quantity and quality estima-
tions for the training data on primary growth were obtained when
combining 3D features, hyperspectral bands and vegetation indices. In
this case, when using LOOCV estimation to assess the RF model, the
correlations and RMSE% (RMSE) were, respectively, at best 0.98 and
13.4% (1479 kg/ha) for the FY, and 0.97 and 14.7% (389 kg/DM) for
the DMY, and for the quality parameters, the PCCs and RMSE% values
were 0.91–0.96 and 2.11–20.73% respectively. At best, the D-value was
estimated with an RMSE% (RMSE) of 1.98% (14 g/kg DM) using hy-
perspectral bands and vegetation indices (HS_b + HS_i). In the testing
data of the primary growth, the D-value was estimated with the same
level of accuracy as that obtained in the training data results using
hyperspectral data. However, for other parameters the estimation errors
increased, most likely due to the differences between the training and
testing areas. The findings for the regrowth areas were aligned with the
primary growth areas, but with smaller PCC values and higher RMSE
values. Despite the higher performance of hyperspectral data in LOOCV

validation, in some cases the multispectral feature set outperformed the
hyperspectral set for the testing data for both the primary growth and
regrowth. The results of the HS_b + HS_i and 3D + HS_b + HS_i sets
were similar for most of the cases in the primary growth and regrowth;
however, the use of 3D features significantly improved the biomass
estimation in the primary growth but not in the regrowth. Overall, the
MLR and RF provided relatively similar results.

Our quality parameters results were at similar levels as those found
in the results of Pullanagari et al. (2012) and Pullanagari et al. (2018).
Pullanagari et al. (2012) investigated the use of a hand-held hyper-
spectral sensor (with a 500–2400 nm range) to estimate several pasture
quality parameters using partial least squares regression. The R2 and
RMSE% of the LOOCV were, respectively, 0.82 and 10.10% for CP, 0.77
and 9.7% for NDF and 0.83 and 5.3% for OMD. For the validation data,
the R2 and RMSE% were, respectively, 0.78 and 11.32% for CP, 0.75
and 10.56% for NDF and 0.83 and 5.14% for OMD. Pullanagari et al.
(2018) studied RF using spectral features from a pushbroom hyper-
spectral camera and topographical features in order to estimate the CP
and ME; at best they achieved an R2 of 0.8 and RMSE% of 1.68% for CP,
and an R2 of 0.78 and RMSE of 0.61 MJ/kg DM for ME.

The models were also estimated for each harvest date separately.
Within the primary growth phase, the accuracies of biomass estimation
were similar for each date and the best values were obtained in the
third harvest, which was close to the optimal harvest date. For all
quantity and quality parameters of the primary growth, the accuracies
of the estimations were better when the four harvests were separated.

Table 13
The Pearson correlation coefficient (PCC) of the training data and the testing data for the regrowth phase. FY: fresh yield; DMY: dry matter yield; D-value: digestible
organic matter in dry matter; iNDF: indigestible neutral detergent fibre; NDF: neutral detergent fibre; WSC: water-soluble carbohydrates; Ncont: nitrogen con-
centration; NU: nitrogen uptake.

Features FY DMY D-value iNDF NDF WSC Ncont NU

Training data PCC
3D 0.73 0.80 0.65 0.55 0.73 0.60 0.39 0.66
3D + RGB_b + RGB_i 0.83 0.88 0.76 0.71 0.78 0.87 0.88 0.83
3D + RGB_b + RGB_i + MS_i 0.87 0.90 0.79 0.75 0.78 0.88 0.88 0.86
HS_b + HS_i 0.94 0.95 0.86 0.85 0.82 0.88 0.84 0.90
3D + HS_b + HS_i 0.94 0.94 0.86 0.84 0.81 0.88 0.84 0.90
MLR(3D + HS_b + HS_i) 0.96 0.96 0.86 0.83 0.79 0.91 0.89 0.92

Testing data
3D 0.51 0.62 0.86 0.80 0.83 −0.22 −0.38 0.28
3D + RGB_b + RGB_i 0.54 0.70 0.91 0.88 0.84 0.42 0.76 0.39
3D + RGB_b + RGB_i + MS_i 0.69 0.72 0.92 0.88 0.86 0.94 0.85 0.69
HS_b + HS_i 0.84 0.84 0.82 0.66 0.84 0.76 0.88 0.84
3D + HS_b + HS_i 0.85 0.86 0.80 0.68 0.93 0.76 0.88 0.87
MLR(3D + HS_b + HS_i) 0.83 0.66 0.91 0.92 0.90 0.86 0.94 0.92

Table 14
The normalised root-mean-square errors (RMSE%) of the training data and the testing data for the regrowth phase. FY: fresh yield; DMY: dry matter yield; D-value:
digestible organic matter in dry matter; iNDF: indigestible neutral detergent fibre; NDF: neutral detergent fibre; WSC: water-soluble carbohydrates; Ncont: nitrogen
concentration; NU: nitrogen uptake.

Features FY DMY D-value iNDF NDF WSC Ncont NU

Training data RMSE%
3D 33.02 27.06 3.79 39.00 5.54 37.85 22.70 34.66
3D + RGB_b + RGB_i 26.79 21.19 3.25 32.55 5.10 22.98 11.45 25.69
3D + RGB_b + RGB_i + MS_i 23.66 19.61 3.05 30.58 5.08 22.62 11.65 23.64
HS_b + HS_i 17.18 15.23 2.57 24.33 4.61 22.39 13.03 20.28
3D + HS_b + HS_i 17.24 16.08 2.53 24.77 4.70 21.96 12.93 20.36
MLR(3D + HS_b + HS_i) 12.94 13.06 2.58 25.72 5.07 19.31 11.20 18.34

Testing data RMSE%
3D 43.67 34.34 2.41 15.29 5.79 50.56 26.29 46.47
3D + RGB_b + RGB_i 36.40 27.82 2.49 24.17 4.20 32.58 24.60 34.49
3D + RGB_b + RGB_i + MS_i 26.61 25.89 2.81 27.03 3.63 16.96 19.01 26.33
HS_b + HS_i 29.21 30.73 4.86 41.37 4.00 28.43 13.99 29.29
3D + HS_b + HS_i 30.60 30.75 4.89 41.24 2.49 26.81 13.52 30.42
MLR(3D + HS_b + HS_i) 26.29 41.46 4.82 21.74 4.72 19.62 11.80 17.57
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However, when all the samples of the three harvests from the regrowth
phase were used in the training data (see Tables 13 and 14), the esti-
mations achieved similar values compared to the results for each date
when separated (see Tables 15 and 16). In the study carried out by
Zheng and Chen (2018), the best estimates were obtained using all
dates together; from using MLR, the obtained correlations' R2 were
0.78, 0.84 and 0.76 for the yield, NDF, and CP respectively, and using
the PLSR model, the R2 were 0.79, 0.80 and 0.77 for the yield, NDF and
CP respectively.

One reason for the differences of the results when compared with
the combined and individual date datasets might be the remaining in-
accuracies in the remote-sensing data calibration. Great effort was ap-
plied in the radiometric calibration of the datasets that were captured
under varying illumination conditions, but further improvements might
be obtained by improving the calibration approaches, for example, by
utilising calibrated irradiance sensors and improved spectral calibration

(Suomalainen et al., 2018, Aasen et al., 2018). The spectral and 3D
features were extracted in separate processes; however, this could be
improved by utilising multi-view spectral analysis to generate a spectral
DSM (Oliveira et al., 2018; Roosjen et al., 2018). Also, the challenges of
the vegetation characteristics during the first and last harvests in the
primary growth cases might have reduced the performance. The results
indicate that the approach is highly promising, but further studies are
needed, for example, in order to investigate the requirements for data
calibration and to develop more general estimators.

The NIR-based vegetation indices have provided superior results in
comparison with RGB-based vegetation indices in studies on the esti-
mation of crop biomass (Tilly et al., 2015). Bareth and Schellberg
(2018) pointed out that the spectral analysis of calibrated RGB imagery
for the estimation process has not been fully compared to multispectral
and hyperspectral data. We evaluated the performance of 3D data and
RGB, multispectral and hyperspectral sensors in the estimation process.

Fig. 12. The relationship between estimated and measured values for the training and testing data for the regrowth phase using random forest estimation method
with the 3D + HS_b + HS_i feature combination. FY: fresh yield; DMY: dry matter yield; D-value: digestible organic matter in dry matter; iNDF: indigestible neutral
detergent fibre; NDF: neutral detergent fibre; WSC: water-soluble carbohydrates; Ncont: nitrogen concentration; NU: nitrogen uptake; RMSE: absolute root mean
square error; R: Pearson correlation coefficient.

Table 15
The Pearson correlation coefficients of the training data for the regrowth phase for each harvesting date using random forest estimation method with the
3D + HS_b + HS_i feature combination. FY: fresh yield; DMY: dry matter yield; D-value: digestible organic matter in dry matter; iNDF: indigestible neutral detergent
fibre; NDF: neutral detergent fibre; WSC: water-soluble carbohydrates; Ncont: nitrogen concentration; NU: nitrogen uptake.

FY DMY D-value iNDF NDF WSC Ncont NU

RG_TR20170724
3D + RGB_b + RGB_i 0.89 0.91 0.52 0.13 0.79 0.88 0.67 0.83
3D + RGB_b + RGB_i + MS_i 0.90 0.93 0.52 0.07 0.78 0.87 0.66 0.83
3D + HS_b + HS_i 0.94 0.95 0.69 0.55 0.76 0.85 0.63 0.89

RG_TR20170803
3D + RGB_b + RGB_i 0.89 0.93 0.62 0.48 0.82 0.92 0.87 0.91
3D + RGB_b + RGB_i + MS_i 0.93 0.96 0.75 0.60 0.85 0.96 0.88 0.93
3D + HS_b + HS_i 0.92 0.97 0.80 0.72 0.89 0.95 0.75 0.91

RG_TR20170814
3D + RGB_b + RGB_i 0.83 0.83 0.55 0.36 0.71 0.75 0.38 0.81
3D + RGB_b + RGB_i + MS_i 0.94 0.90 0.63 0.53 0.73 0.77 0.48 0.89
3D + HS_b + HS_i 0.95 0.90 0.63 0.52 0.72 0.74 0.48 0.90
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The estimations using RGB bands (RGB_b), RGB indices (RGB_i) and 3D
data (3D + RGB_b + RGB_i) presented compatible results with the
multispectral case (3D + RGB_b + RGB_i + MS_i) for the D-value and
NDF estimations of the primary growth data and regrowth. However, in
general the more spectral features were used, the more accurate the
estimation of the quantity and quality attributes became. This led to
better overall accuracies using hyperspectral feature combinations,
which was even more accentuated in the biomass estimations. The
multispectral features combined with 3D features presented results si-
milar to the hyperspectral combinations for D-value, NDF and Ncont
estimations in both primary growth and regrowth data. Yue et al.
(2018) also obtained better RF estimates of winter wheat's above-
ground biomass when combining height and vegetation indices than
when using only vegetation indices or only crop height. The authors
also used a hyperspectral frame camera and RGB camera mounted on a
drone and obtained R2 of 0.83 and RMSE% of 10.47% for the training

data of above-ground biomass.
Utilising drones for predicting the FY and DMY provides valuable

information for grazing management that can be used to set stocking
rates in order to provide the desired herbage allowance (Virkajärvi,
1999) without rising plate meters, as presented by Bareth and
Schellberg (2018). Together with Ncont, DMY facilitates fertiliser ap-
plication considerations. This study shows that these parameters can be
estimated using drone remote sensing with a suitable degree of accu-
racy. It is important to estimate other quality parameters, in particular
the D-value, especially in silage making, since they directly affect the
milk production and thus the profitability of the farm (Rinne et al.,
1999). In Finland, the D-value is reduced by 5 g/kg DM a day or at an
even faster rate during the fastest development period in primary
growth; thus, the right timing of harvesting is crucial (Rinne, 2000).
Huhtanen et al. (2006) studied various forage evaluation methods to
predict D-values and they set the goal of reducing the prediction error

Table 16
The normalised root mean square error of the training data for the regrowth phase for each harvesting date using random forest with the 3D + HS_b + HS_i feature
combination. FY: fresh yield; DMY: dry matter yield; D-value: digestible organic matter in dry matter; iNDF: indigestible neutral detergent fibre; NDF: neutral
detergent fibre; WSC: water-soluble carbohydrates; Ncont: nitrogen concentration; NU: nitrogen uptake.

FY DMY D-value iNDF NDF WSC Ncont NU

RG_TR20170724
3D + RGB_b + RGB_i 22.44 16.41 2.49 45.10 4.22 25.29 12.95 28.15
3D + RGB_b + RGB_i + MS_i 21.71 15.25 2.48 46.17 4.28 26.10 12.98 28.35
3D + HS_b + HS_i 16.29 13.20 2.09 36.05 4.49 27.49 13.46 23.05

RG_TR20170803
3D + RGB_b + RGB_i 20.53 13.78 2.68 33.12 4.93 20.11 8.45 20.07
3D + RGB_b + RGB_i + MS_i 16.96 11.29 2.27 30.09 4.45 14.21 8.31 17.40
3D + _b + HS_i 17.19 9.97 2.07 25.76 3.86 15.67 10.93 18.99

RG_TR2017h0814
3D + RGB_b + RGB_i 25.00 19.60 3.06 17.28 5.78 22.61 12.80 22.17
3D + RGB_b + RGB_i + MS_i 16.32 15.56 2.84 15.61 5.55 22.17 12.12 17.63
3D + HS_b + HS_i 14.45 15.64 2.84 15.95 5.65 23.02 12.15 16.47

Fig. 13. The relationship between the estimated and measured values for the training data for the regrowth phase separated by date using a random forest with the
3D + HS_b + HS_i feature combination. FY: fresh yield; DMY: dry matter yield; D-value: digestible organic matter in dry matter; iNDF: indigestible neutral detergent
fibre; NDF: neutral detergent fibre; WSC: water-soluble carbohydrates; Ncont: nitrogen concentration; NU: nitrogen uptake; RMSE: absolute root mean square error;
R: Pearson correlation coefficient.
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of the D-value to below 15 g/kg DM. The achieved accuracy of our
study was 10 g/kg DM in the testing data for the primary growth, which
indicates that we can find the optimal harvesting time with 2–3 day
accuracy using drone-based hyperspectral imaging and photo-
grammetry.

The ability to reveal spatial differences in the yield and quality
within a field can assist farmers learning from the factors affecting their
grassland production. In addition, carrying out on-farm trials can be
easier than with the conventional yield-measuring methods. The use of
the double sampling technique described by 't Mannetje (2000) for non-
destructive methods could be applied to on-farm trials utilising remote
sensing. This would include the accurate determination of the DM yield
in a few samples (reference data) and the utilisation of drone data from
large numbers of trial plots including the reference plots. Jointly uti-
lising the information from grass growth models would help predict, for
example, the D-value development and provide further information on
the spatial variation in the field by using drone-obtained data (Hyrkäs
et al., 2016; Korhonen et al., 2018; Persson et al., 2019). For example,
in round-bale harvesting, drone-based data on the variation in D-values
within a field could facilitate the identification of the quality of in-
dividual bales and facilitate their use accordingly.

5. Conclusions

This study presented the first comprehensive assessment of the po-
tential of drone-based spectral remote sensing and photogrammetry for
estimating the biomass and quality parameters of grass swards for silage
production. Models were trained using RF- and MLR-based machine
learning technologies. The results showed that drone-based remote
sensing could be used to predict the yield quantity and quality with an
adequate degree of accuracy and to study the spatial differences within
a field and between different fields, thus indicating great potential for
remote sensing and drones to support the management of silage pro-
duction for animal feeding. Further studies on cost-efficient sensors,
data calibration, the most suitable machine learning techniques and
more comprehensive training data will be necessary in order to develop
procedures for practical use. Studies using annual harvest data will be
valuable in order to assess the performance of the estimators in prac-
tical conditions. In comparison to traditional field measurements using
rising plate meters, for example, and NIRS analytics, the advantages of
a drone-based approach include the potential for automation and real-
time measurements, as well as the potential for providing complete
spatial coverage of the estimates over the entire field.
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