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A B S T R A C T

The rapid and non-invasive prediction of soil sand, silt, and clay is becoming increasingly attractive given the
laborious nature of traditional soil textural analysis. This study proposed a novel and cheap setup comprising a
smartphone, a custom-made dark chamber, and a smartphone application for predicting soil texture of the dried,
ground, and sieved samples. The image acquisition system was used to capture triplicate images from 90 mineral
soil samples, representing a wide textural variability from sand to clay. Local features, color features, and texture
features were extracted from the cropped images and subsequently used in different combinations to predict
laboratory-measured clay, silt, and sand via random forest (RF) and convolutional neural network (CNN) al-
gorithms. Results indicated high prediction accuracy for clay (R2 = 0.97–0.98) and sand (R2 = 0.96–0.98) and
moderate prediction accuracy for silt (R2 = 0.62–0.75) using both algorithms. Color features outperformed all
other image-extracted features and showed the maximum influence on RF model performance. The better
performance of the color features can be attributed to the color features of mineral matter and soil organic
matter (SOM). An Android-based smartphone application based on the calibrated CNN model was able to predict
and return soil textural values. These results exhibited the potential of the proposed system as a proximal sensor
for rapid, cost-effective, and eco-friendly soil textural analysis using computer-vision and deep learning. More
research is warranted to augment the setup design, develop a standalone mobile application, and measure the
impacts of soil moisture and high SOM on the model prediction performance to extend the approach for on-site
prediction of soil texture.

1. Introduction

Modern innovations in precision agricultural techniques and sensors
have resulted in profitable agricultural enterprises (Higgins et al.,
2019). Advanced technologies have helped to gain accurate informa-
tion on the soil microclimate while a wide range of studies has already
established the suitability of on-the-go soil sensors (Kheiralla et al.,
2016; Ji et al., 2019). The advantages of these sensors come from their
ability to offer relatively cheaper high-density measurements. Among
soil physical parameters, soil texture is an important attribute that in-
fluences several soil properties like water and nutrient holding capacity,
density or compaction, air movement, complexation by humus, soil
erosion potential, etc. Rapid and cost-effective quantification of soil

texture can be an important tool for precision agriculture (Heggemann
et al., 2017) and sustainable soil management. Proper knowledge of soil
textural variability can be helpful for judicious agronomic practices in
diverse crop growth conditions.

In the laboratory, conventional soil textural analysis involves
cumbersome processes like drying, grinding, and sieving before time-
consuming (~two working days) sedimentation analysis of sand, silt,
and clay using hydrometer or pipette (Gee and Bauder, 1986). This
approach, while delivers the accurate soil textural results, is not meant
for rapid and high-density textural evaluation for spatial variability
analysis. Besides, these methods require H2O2, a corrosive reagent to
destroy the native soil organic matter (SOM). Although an advanced
laser diffraction particle size analyzer can generate the textural report
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with a wide dynamic range and flexibility, this method is also fraught
with several limitations like high-cost and sampling errors, particularly
with finer fractions (Di Stefano et al., 2010; Fisher et al., 2017).
Therefore, there is a need for developing a rapid and sophisticated but
cheaper technology for measuring soil texture (Vendrame et al., 2012;
Sudarsan et al., 2016, 2018; Qi et al., 2019; Fu et al., 2020).

Recently, several proximal sensors have been successfully utilized
for rapid and cost-effective measurement of soil textural parameters.
Viscarra Rossel et al. (2007) used a hyperspectral γ‐ray spectrometer to
predict soil texture. Zhu et al. (2010) used a portable X-ray fluorescence
spectrometer (PXRF) to satisfactorily predict the soil texture of 584 soil
samples collected from geographically and physiographically diverse
regions of North America. Villas-Boas et al. (2016) used laser-induced
breakdown spectroscopy (LIBS) for the rapid quantification of soil
texture. Moreover, hyperspectral visible near-infrared diffuse re-
flectance spectroscopy (VisNIR DRS) has become well known for
quickly and simultaneously quantifying multiple soil parameters in-
cluding soil texture by analyzing the soil surface reflected radiation
(Hermansen et al., 2017). Generally, VisNIR DRS uses a white light
source to illuminate the soil surface and collects reflected energy. The
energy is carried into a spectroradiometer via fiber optic cable and
parsed at 1–10 nm intervals from 350 to 2500 nm. Following appro-
priate spectral pre-treatment (e.g., first derivative, standard normal
variate, etc.), regression procedures (e.g., random forest, support vector
regression, penalized spline regression; partial least squares regression)
are used to predict unknowns from a training dataset, in much the same
way that unknown pH values are determined after first creating a ca-
libration equation with several known standards. Viscarra Rossel et al.
(2006) concluded that mid-infrared DRS (mid-IR DRS) is also adept at
predicting soil textural fractions given its sensitivity to quartz and clay.
Yet, both VisNIR DRS and mid-IR DRS are non-imaging spectroscopic
techniques and require extensive experience in spectral data processing
and modeling to deduce meaningful interpretation.

While the rapidity and in-situ applicability of PXRF, LIBS, and DRS
techniques can be outweighed by their high cost and rare accessibility
especially in developing countries where funds are extremely limited
for soil characterization, easily accessible devices like the digital
camera and smartphone have gained attention in predicting multiple
soil parameters. Soil color is a consequence of soil mineral and organic
constituents. Scientists have calibrated SOM and soil organic carbon via
image-extracted soil color as a proxy (Visacarra Rossel et al., 2008; Fu
et al., 2020). Microscopic image analysis has been already used for
capturing and describing soil micromorphological features (Sudarsan
et al., 2016). With the advancement of digital image processing, com-
puter vision, and deep learning it is now possible to explore soil features
in soil section images (Sofou et al., 2005; Marcelino et al., 2007;
Elyeznasni et al., 2012). However, preparing soil thin section relies on
complex preprocessing steps and thus impossible to implement in-situ.
To offset this problem, Sudarshan et al. (2018) proposed methodology
involving microscopic image acquisition in conjunction with con-
tinuous wavelet transform (CWT)-computer vision algorithm to rapidly
predict soil texture, both in-situ and ex-situ. Qi et al. (2019) used mi-
croscope-captured soil images to satisfactorily predict soil texture via
bag of visual words (BoVW) model and multivariate partial least
squares regression (PLSR). Notably, the BoVW algorithm was used to
extract soil surface features like color and roughness which were then
correlated with sand, silt, and clay via PLSR.

Smartphones are portable, inexpensive, and less subjective in soil
color determination than the Munsell color chart. Further, a smart-
phone with good image acquisition capability can be useful for ex-
amining the soil morphology. Aitkenhead et al. (2016) used soil profile
images captured via smartphone to predict soil texture. However, they
were unable to achieve high prediction accuracy for sand, silt, and clay,
possibly due to the heterogeneity of the field conditions. The same
group of authors used digital RGB photography in tandem with neural
network modeling to predict soil texture but could not achieve good

prediction accuracy (Aitkenhead et al., 2018) due to a limited number
of input variables. Morais et al. (2019) combined digital image pro-
cessing and multivariate image analysis to predict soil texture. Despite
Gómez-Robledo et al. (2013) have established the potential of smart-
phone as a reliable soil-color sensor, still, there is a lack of a compre-
hensive approach where smartphone images can be effectively utilized
to generate textural prediction using a smart phone application.
Moreover, inconsistency and variability in the image acquisitions sys-
tems and the image processing algorithms also limited the applicability
and advancement of this research.

Notably, random forest (RF) is a powerful ensemble learning algo-
rithm that uses hundreds of decision trees to predict/classify a sample
(Breiman, 2001). In general, each tree is built from a bootstrap sample
drawn from the calibration set. At each node of the tree, the candidate
set of the predictor is a random subset (mtry) of all the predictors. The
final prediction of a new observation is calculated as the average of the
predictions from all the trees in the forest. Researchers have established
that the RF ensemble shows better prediction than an individual tree.
Recently, scientists have used RF for soil type classification via geo-
graphic object-based image analysis (Dornik et al., 2018). Chagas et al.
(2016) have used RF to spatially predict soil surface texture. Convolu-
tional neural network (CNN) is another powerful algorithm that has
been extensively used for image processing and object detection (Cai
et al., 2016; Zhang et al., 2016; Vardhana et al., 2018). Notably, CNN is
a deep learning method that can differentiate images from each other
by allocating learnable weights and biases to several objects in the
image. A useful feature of CNN is its capability to detect the spatial and
temporal dependencies present in an image.

Therefore, in this research, we aim to develop a novel and in-
expensive setup (image acquisition system) comprising a smartphone, a
custom-made dark chamber and a smart phone application for pre-
dicting soil texture using dried, ground, and sieved samples in labora-
tory via RF and CNN algorithms. We hypothesize that the soil images
acquired via the proposed system will be able to predict soil textural
parameters using computer vision, machine learning, and deep
learning.

2. Materials and methods

2.1. Sample description

A total of 90 soil samples were collected randomly in deference to
site accessibility, covering three ecoregions of West Bengal province of
India including the coastal saline zone (CSZ), alluvial, and lateritic
zone, to ensure the variation in soil types. The CSZ soils are naturally
formed by the action of tidal water. Contrariwise, reddish Lateritic soils
are old soils showing redoximorphic attributes and are characterized by
their honeycomb structure. CSZ soil samples represented Akshayanagar
(Fine, mixed, hyperthermic, Typic Endoaquepts) and Patibunia (Fine-
loamy, mixed, hyperthermic, Typic Endoaquepts) soil series whereas
laterite samples represented Teltaka (Fine-loamy, mixed, hyperthermic,
Aeric Endoaqualfs) and Ruisanda (Fine, mixed, hyperthermic, Vertic
Endoaqualfs) soil series (Nayak et al., 2001; Soil survey staff, 2014).
Alluvial soils were collected from Indo-Gangetic alluvial plain and re-
presented Shyampur (Fine, mixed hyperthermic, Aeric Endoaquepts)
soil series. Samples were collected from the mineral soil surface
(0–15 cm) of fallow croplands using a standard trowel per
Schoeneberger et al. (2012), after discarding any vegetation present at
the surface. Sample trowel was cleaned between soil collection and
sufficient distance between samples (at least 200 m) was maintained to
ensure reasonable independence between collected samples. For geo-
locating and future spatial analysis, the sampling points were uploaded
in a Garmin E-trex global positioning system receiver (Garmin, Olathe,
KS). Samples were collected in labeled zip-lock bags and transported
back to the soil chemistry laboratory of IIT Kharagpur. Before labora-
tory analyses, all samples were oven-dried (105 °C) and ground to pass
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a 2-mm sieve. A modified hydrometer method was used to determine
soil texture with clay determinations made at 1440 min with a soil
hydrometer (ASTM model 152H) (Gee and Bauder, 1986). Separately,
1 g of air-dried, and ground sample was used to measure SOM by di-
chromate acid oxidation followed by titration (Nelson and Sommers,
1996).

2.2. Setup for image acquisition

A smartphone image capturing dark chamber
(12 cm × 8 cm × 5 cm) was constructed using recycled item (a
cardboard box), LED strip powered by a DC power adapter, and a LED
bulb dimmer switch illumination controller (Fig. 1a and b). The box
was entirely painted with black color to avoid any reflection of light
within the box. A square-shaped (2 cm × 2 cm × 1 cm) holder was
mounted on the bottom part of the box and was used to hold the soil
sample. A round window was opened at the top of the box to hold the
smart phone camera for capturing images of the soil samples. The
white-colored LED strip ran through the vertical faces of the wall whose
brightness was controlled using the external dimmer switch. The box
was designed to capture images at a fixed distance. To maintain the
desired pixel depth, the optimum field of view was observed at a dis-
tance of 4.5 cm from the soil surface. Dried and ground soil sample was
uniformly packed in the holder using a spatula and a Xiaomi Poco F1
smartphone equipped with a 12.1-megapixel camera was used to cap-
ture the images (4032 × 3024 pixels) from 4.5 cm above. The smart-
phone was kept in a holder designed outside the box for stable support.
To achieve consistent image acquisition, the dark chamber was con-
structed to standardize the image capturing variables like the soil
sample and detector positions and illumination. The captured images
were saved as a Joint Photographic Experts Group (JPEG) file. For re-
moving the bias, 3 images were taken per sample with three different
levels of illumination [high (~600 l×), medium (~500 l×), and low
(~400 l×)] using the dimmer. A total of 270 images were generated
from 90 samples for subsequent image processing and prediction.

2.3. Image processing and soil texture modeling

All image analyses were performed in Python 3.6 environment
(Python Software Foundation, DE, USA). the first step of image pro-
cessing involved selection of the region of interest (ROI). The ROI was
selected for a square-shaped area of 1800 × 1800 pixels with 96 dpi of
horizontal and vertical resolution and 24 dpi bit depth from the center
of the image and used for subsequent feature extraction and

representation. All 270 images were randomly divided into training
(n = 180, ~66%) and testing set (n = 90, ~33%) for executing texture
prediction models.

2.3.1. Feature extraction and representation
Fig. 2 represents the methodological flowchart used in the feature

space extraction and subsequent modeling. Initially, the bag of visual
words (BoVW) model, an algorithm for language processing and in-
formation recovery from text documents, was used for image feature
extraction and feature representation. The conventional scale-invariant
feature transform (SIFT)-BoVW algorithm relies on local features or
local descriptors extraction, codebook or visual dictionary representa-
tion using k-means clustering, local feature quantization into visual
words using the codebook, and image representation by visual words.
For more details on BoVW, see Qi et al, (2019).

The nature of soil images is frequently characterized by various
colors and textures of its diverse local components. While the use of soil
texture and color has been already established for soil image classifi-
cation, the shape of soil particles and contours was not that effective
due to the inherent variability of soil appearance. Since the traditional
SIFT-BoVW model does not utilize any color and texture information in
the image description, it may affect soil classification performance.
Therefore, we incorporated soil color histogram values and texture in-
formation with the SIFT key points, generating a more robust color-
texture-SIFT-BoVW feature space (hereinafter, referred to as the full
feature space).

Color [HSV (hue, saturation, value) color histogram values and Hu
moments], and texture [local binary patterns (LBP) and Harallick fea-
tures] were used as additional features for soil image analysis. For HSV
color histogram values, the RGB color space of the cropped images was
transformed into HSV components which were then represented by a
512-dimension feature vector. Moreover, the Hu Moments, which is a
set of seven numbers computed using central moments that are constant
to image transformations, were also computed. The first six moments
were invariant to translation, scale, rotation, and reflection while the
7th moment’s sign changed for image reflection. Apart from color, the
LBP algorithm which is traditionally used for detecting faces in an
image was used to calculate certain texture features of the soil image.
LBP detects points surrounding a central point and evaluates if the
surrounding points are greater than or less than the central point,
generating a binary result. Thus, the LBP operator is an excellent
measure of the spatial structure of local image texture. For producing
the LBP histogram values using the texture, an existing implementation
in the ‘skimage’ package was used, with the number of circularly

Fig. 1. Isometric views of a) the dark chamber interior and b) the complete assembly.
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symmetric neighbor set points fixed to 24 and the radius of each circle
set to 8 pixels, which gave a total of 26 textural features. Also, the
Haralick feature algorithm was used to quantify an image based on its
texture (Haralick et al., 1973). Haralick features depend on the gray-
level co-occurrence matrix (G). Notably, G is a square matrix with di-
mension equals to the gray levels of an image (Ng). Element [i,j] of the
matrix G is calculated by counting the number of occurrence of a pixel
with value i surrounding a pixel with value j and subsequently dividing
G by the total number of such contrasts (Eq. (1)).
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In this study, the Haralick feature used four G matrices to compute a
total of 13 textural features for generating the subsequent global fea-
tures. Before SIFT-BoVW, Hu, LBP, and Haralick feature extraction, the
cropped RGB image was converted to a grayscale image. The color (519
features) and texture (39 features) cumulatively produced a total of 558
global features which were then combined with the 100 SIFT-BoVW
local features, generating a total of 658 features for the full feature
space. In this study, the SIFT-BoVW model was executed in the
‘OpenCV-python’ package. Further, ‘skimage’ and ‘mahotas’ packages
were used for feature extraction.

2.3.2. Machine learning and deep learning
Initially, random forest (RF) regression, which is an ensemble

learning technique (Breiman, 2001), was used to predict clay, silt, and
sand using the color features, texture features, and SIFT-features in
different combinations. In this study, the ‘randomforest’ package in R
version 3.6.2. (R Core Team, 2020) was used to execute the RF model
with 500 trees. The training dataset was used to build the model while
the test set was used to validate the training model performance.

To estimate the relative variable importance in RF prediction
models, an increasingly stringent variable contribution evaluation plan

was executed. Initially, RF variable importance plots were created for
clay, silt, and sand using the full feature space. Subsequently, to eval-
uate the impact of SIFT, color (HSV + Hu) and texture
(LBP + haralicks) features separately on the full feature space RF
model performance, the sum of relative importance for each group of
variables were plotted after scaling them to a sum of 100. One of the
limitations of the RF algorithm to measure the relative variable im-
portance is that it can only randomly shuffle one variable at a time.
Consequently, the RF algorithm codes were modified to randomly
shuffle a group of variables at a time so that the decrease in prediction
accuracy can be attributed to the overall importance from that group of
variables (color, texture, and SIFT). To quantify the decrease of pre-
diction accuracy after permutation, the following metrics were calcu-
lated: [(R2 without permutation – R2 with permutation)/ R2 without
permutation].

Moreover, the convolutional neural network (CNN) algorithm was
employed using the ‘Keras’ and ‘Tensorflow’ packages in Python to
predict soil clay, silt, and sand. In this study, a total of eight convolu-
tional layers were applied to the images followed by a dropout layer to
avoid overfitting which was then connected to a fully connected net-
work. The output was a 3-dimensional vector representing the clay, silt,
and sand contents. The model prediction performance was evaluated
using R2, RMSE, residual prediction deviation (RPD), and RPIQ statis-
tics (Chakraborty et al., 2017). Descriptive statistics were generated
using the ‘NumPy’ and ‘pandas’ packages.

2.4. Mobile application development and testing

An Android-based application, ‘SoilAnalyser’ was developed using
Android Studio 3.6 which is Google's integrated development en-
vironment (IDE) software, where the pre-trained CNN model was de-
ployed (Fig. 3). A Flask server developed in Python was hosted on
Amazon Web Services (AWS) where the application was used as a client
to send images captured by the smartphone. All image processing and
subsequent sand, silt, and clay predictions were executed in server and
the weights of the trained CNN model were saved during the model

Fig. 2. Flowchart showing the scale-invariant feature transform-bag of visual words algorithm, local binary pattern histogram, Haralick features, Hu moments, and
HSV color histogram deployed to the smartphone-captured image to represent image features.
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training process. The predicted clay, silt, and sand values were then
sent to the user through short message service (SMS) which was exe-
cuted by integrating the SmsManager application program interface
(API) in the SoilAnalyzer application. SmsManager accepts mobile
number and string variables as arguments. Notably, a user can also
query multiple images at a time through this application. For more
details, see the Supplementary material (SM).

3. Results and discussion

3.1. Descriptive statistics and soil textural variations

Descriptive statistics of clay, silt, and sand exhibited high variability
with CV ranging between 41% and 67%. (Table 1). Clay content ranged
between 4 and 79% with a mean of 32.08%. Sand also exhibited a wide
range (13–92%) with an average of ~55% and a standard deviation of
22.62%. Nevertheless, relatively less variability was observed for silt
(3–22%), indicating a small range. Clay content exhibited moderate
skewness (0.892). All three soil separates exhibited flatter non-normal

distribution with negative kurtosis, justifying the use of non-parametric
regression like RF and CNN. While the SOM content of the tested mi-
neral soils also exhibited wide variability from 0.20 to 3.63%, it yielded
a significant negative correlation with sand (r = -0.97) and a sig-
nificant positive correlation with clay (r = 0.63). Conversely, a mod-
erate positive correlation was observed between SOM and silt
(r = 0.53). According to the USDA textural triangle (Fig. 4), soil
samples used in this study were grouped into five textural classes: sand,
loamy sand, sandy loam, sandy clay loam, and clay. The cropped
smartphone captured images of one representative sample for each
textural group are also shown in Fig. 4, exhibiting both visual color and
textural variability.

3.2. Modeling results and performance of the mobile application

Table 2 summarizes the RF and CNN model validation statistics for
predicting clay, silt, and sand. For both clay and sand, RF models using
image-derived features in different combinations showed almost similar
model generalization capabilities. Besides, for predicting silt, RF models

Fig. 3. The screen of the smartphone running the SoilAnalyzer Android app for predicting soil texture: a) the main menu; b) and c) image selection; d) uploading the
files to the server; e) CNN model predicted soil textural values; f) and g) sending results to the end user via SMS; and h) textural values received at the end user.
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using texture, color, and SIFT + color + texture features (full feature
space) produced similar validation results. While using the full feature
space, clay and sand predicting models produced R2 values of 0.98 and
0.97, respectively, closely following the 1:1 line (Fig. 5). Conversely,
model performance worsened while predicting silt (R2 = 0.70,
RPD = 1.84). Nonetheless, RF models with color features only
(HSV + Hu) were generally very close in performance to the full fea-
ture models (Table 2, Fig. 5), and exhibited a close agreement between
model-predicted soil separates and laboratory-measured values. Thus,
with deference to the law of parsimony, RF predictive models using
color features in isolation appeared to be preferable for the prediction
of clay, silt, and sand. As indicated in Table 2, the CNN models for all
three soil separates produced better results than RF prediction models
and thus used for subsequent mobile application development. The
better performance of CNN stems from the fact that it can “see” the

image at a deeper level as a composition of various edges, lines, corners
and capture the contents of the image. The validation RMSE for pre-
dicting the clay content varied from 2.77 to 3.48% among all tested
models which was encouraging since clay generally shows the highest
uncertainty in traditional laboratory textural measurements. This can
be attributed to the high resolution of the smartphone camera. Com-
paring the prediction performance for clay, silt, and sand, approach
documented herein produced better results than those reported by Su-
darshan et al. (2018) (R2 values of 0.48–0.87 and 0.56–0.88 for coarse
fractions and fine fractions, respectively) and Qi et al. (2019) (R2 values
of 0.77, 0.68, and 0.71 for sand, silt, and clay, respectively) using mi-
croscopic images of air-dried soil samples. The proposed methodology
also produced better soil texture prediction than Aitkenhead et al.
(2018) (R2 values of 0.25, 0.19, and 0.18 for sand, silt, and clay, re-
spectively) who used digital RGB photos in tandem with the neural

Table 1
Descriptive statistics of clay, silt, sand, and SOM in 90 soil samples used for image analysis and modeling.

Statistic Min Max 1st Quartile Median 3rd Quartile Mean Standard deviation CV (%) Skewness (Pearson) Kurtosis (Pearson)

Clay (%) 4 79 21.25 27.00 31.00 32.08 21.53 67 0.892 −0.335
Silt (%) 3 22 8.00 14.00 18.00 12.95 5.71 44 −0.367 −1.264
Sand (%) 13 92 53.00 55.00 64.75 54.95 22.62 41 −0.239 −0.690
SOM (%) 0.20 3.63 2.15 2.68 2.95 2.37 0.85 36 −1.09 0.111

Fig. 4. USDA soil texture triangle representing all samples distributed in five textural groups and cropped images of one representative sample from each group.
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Table 2
Random forest and CNN model validation performance for using image-derived features in different combinations.

Target Model Features Validation R2 Validation RMSE (%) RPD Bias RPIQ

Clay (%) RF SIFT 0.97 3.39 6.42 −1.3 3.23
RF color 0.97 3.45 6.32 −0.8 3.18
RF texture 0.98 3.24 6.72 −1.2 3.39
RF SIFT + color 0.97 3.48 6.27 −0.9 3.16
RF SIFT + texture 0.98 3.18 6.86 −1.2 3.45
RF color + texture 0.98 3.41 6.38 −0.9 3.21
RF SIFT + color + texturea 0.98 3.33 6.54 −0.9 3.30
CNN RGB image 0.98 2.77 7.87 −0.3 3.96

Silt (%) RF SIFT 0.62 3.60 1.63 0.2 3.32
RF color 0.71 3.13 1.88 0.2 3.83
RF texture 0.64 3.49 1.69 0.3 3.43
RF SIFT + color 0.69 3.25 1.81 0.2 3.69
RF SIFT + texture 0.63 3.53 1.66 0.2 3.39
RF color + texture 0.71 3.15 1.87 0.2 3.80
RF SIFT + color + texture 0.70 3.19 1.84 0.1 3.75
CNN RGB image 0.75 2.94 2.00 0.1 4.08

Sand (%) RF SIFT 0.96 4.56 4.89 1.4 1.97
RF color 0.97 3.82 5.83 0.8 2.35
RF texture 0.96 4.59 4.85 1.3 1.95
RF SIFT + color 0.97 3.77 5.90 0.8 2.38
RF SIFT + texture 0.96 4.28 5.19 1.4 2.09
RF color + texture 0.97 3.75 5.94 0.8 2.39
RF SIFT + color + texture 0.97 3.87 5.76 0.9 2.32
CNN RGB image 0.98 2.90 7.70 0.2 3.11

a Color-texture-SIFT-BoVW feature space, also known as the full feature space.

Fig. 5. Random forest predicted vs laboratory-measured plots for a) clay using full feature space, b) silt using full feature space, c) sand using full feature space, d)
clay using color features only, e) silt using color features only, and f) sand using color features only. The dashed line represents the 1:1 line while the solid line
represents the regression line.
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network model to predict soil texture. Sand prediction by the approach
documented herein (RPD values of 4.85–7.70) outperformed DRS-based
sand prediction with RPD values below 2 (Viscarra Rossel et al., 2006).
This study also produced lower RMSEs for clay and sand than those
reported by using Mid-IR (Minasny et al., 2008) (6.31% and 6.23% for
sand and clay, respectively).

The judicious selection of input variables is crucial for portable and
user-friendly devices since adding too many predictor variables often
causes over-simplification of the predictive model (Noori et al., 2010).
Initially, the variable importance plots of the full feature space RF
models for clay, silt, and sand exhibited 23, 24, and 15 HSV features,
respectively, among the top 30 influential features (Fig. 6). Subse-
quently, while plotting the sum of relative importance for SIFT, color
(HSV + Hu), and texture (LBP + haralicks) features separately on the
full feature space RF model performance, the following feature im-
portance was observed for all three soil separates: color > SIFT >
color + texture (Fig. 7), justifying the RF model results (Table 2).
Finally, the combined variable importance plot for all three separates
(Fig. 8) also revealed the same trend as overserved earlier (Fig. 7)
where color features outperformed SIFT and texture features.

The better performance of color features can be attributed to the
color features of mineral matter and SOM. While in the light-textured
soils, the HSV parameters predominantly depicted the influence of
mineral color given the negative correlation between sand and SOM
(r = −0.97), the high coefficient of determination observed while
predicting clay may be linked with the combined influence of SOM and
clay mineral color on the image-extracted HSV values. A similar in-
fluence of SOM color in predicting soil texture was reported by Qi et al.
(2019). However, color is not exclusively linked to soil texture and
caution must be used in applying such an interpretation. Clays are well
known to physically protect organic matter from degradation, thus
generally supporting higher organic matter content and darkening the
soil via melanizaiton (e.g., in mollisols) (Parton et al., 1994; Bockheim
and Gennadiyev, 2000). However, dark color can also be observed in
certain sands where the mineralogical origin is from dark colored
parent material (e.g., basalt, amphibole, etc.) (Schaefer and Mcgarity,
1980). The influence of mineral color on HSV parameters in the present
study stems from the fact that sand particles appear brighter under the
LED light of the dark chamber, as reported in other studies (Sudarsan
et al., 2016). Furthermore, the presence of Fe-oxides manifested brown
color in coarse-textured lateritic soils. Commonly, in soil, SOM acts as a

binding agent creating micro-aggregates (Sudarsan et al., 2018). Also,
while conducting the chemical particle size analysis, sodium hexame-
taphosphate is added to the suspension to physically disperse soils
which cannot be completely obtained via mechanical grinding em-
ployed in the proposed approach. Nevertheless, the high prediction
accuracy for clay and the close agreement between the 1:1 line and the
RF regression line (Fig. 5) are encouraging, implying that the proposed
methodology, involving drying, grinding, and computer vision, did not
misinterpret these micro-aggregates as coarse soil separates like silt and
sand.

3.3. Practical considerations and limitations

The proposed image acquisition system in conjunction with com-
puter vision, machine learning, and deep learning exhibited promise for
smartphone-based soil texture prediction in the laboratory. However, a
few limitations of the study can be listed. Firstly, more research is
warranted so that this methodology can be extended for predicting soil
texture on-site after excavating the soil from the field with negligible
processing, ensuring significant time and cost savings. Notably, the
measurement variability which could probably arise due to the varying
moisture content and aggregates, found under field-conditions, were
eliminated by the drying, grinding, and sieving of the sample. Indeed,
soil moisture is one of the major challenges for image-based proximal
soil sensing (Sudarsan et al., 2018) which may produce image distortion
in soils with high clay content due to their higher water holding ca-
pacity (Qi et al., 2019). Nonetheless, further studies are warranted to
measure the impact of these variables on the method performance be-
fore drawing a strong conclusion. Both RF and CNN algorithms were
able to predict sand and clay with greater accuracy, perhaps since all
soils used in this study were mineral soils. However, more deviation is
expected in soils with high SOM like peat and muck soils (Sudarsan
et al., 2018). For example, organic coated sand grains in the surface
mineral horizon often produce dark-colored light-textured soils (Lindbo
et al., 1998), confounding the color-based prediction of soil texture.
While we do not recommend the elimination of classical laboratory-
based particle size analysis, the usefulness of making soil texture pre-
dictions with significant time and cost savings still signifies substantial
progress in smartphone-based soil science applications. For example, in
the present study, one student successfully scanned 90 samples in tri-
plicate using a smartphone in just 4 working hours and no consumable

Fig. 6. Random forest variable importance plots for a) clay using full feature space, b) silt using full feature space, and c) sand using full feature space.

R.K. Swetha, et al. Geoderma 376 (2020) 114562

8



was purchased. The whole image-acquisition setup costs ~$ 255USD [$
250 USD for the smartphone + $5 USD for the dark chamber]. The
proposed approach could be useful in developing countries where the
access to deionized water for particle size analysis and lab space are
limited, especially in remote areas. But even in those areas, people now
have the access of rudimentary smartphones.

Admittedly, since the majority of soil samples represent only three
textural classes (sand, loamy sand, and clay), one should use caution
while interpreting the coefficient of determination values of the tested
RF and CNN models (Fig. 5, Table 2). Specifically, the absence of
samples from all 12 textural classes and the unavailability of enough
silty samples somewhat limited the scope and performance of the tested
models. While the proposed method offered similar error (< 5%) as
compared to the conventional laboratory methods, it is necessary to
include more images from a wide range of soil samples to validate the
robustness of smartphone-based soil texture analysis. Also, since the
RGB values of a similar color show variability due to their device-de-
pendency (Westland and Ripamonti, 2004), a variety of smartphones
with the similar resolution tested in this study must be evaluated to
validate the methodology reported herein. Also, the developed mobile
application needs to be standalone so that it can automatically extract
image features and run the model locally inside the same smartphone to
produce an objective and accurate textural prediction. Notably, for the
successful application of the proposed approach for other areas, soil
image libraries need to be representative of the soils of the region of
interest which further underscores the importance of robust local cali-
bration models with a large sample number. Consequently, there is a
need for worldwide collaboration where soil images collected at mul-
tiple laboratories should be used to develop multiple local prediction
models.

4. Conclusions

This study reports on a novel and cheap setup comprising a smart-
phone, a custom-made dark chamber and a smart phone application for
predicting soil texture using dried, ground, and sieved samples in la-
boratory. The image acquisition system captured triplicate images from
90 soil samples, representing a wide textural variability from sand to
clay. Local features (SIFT-BoVW), color features (HSV + Hu), and
texture features (LBP + Haralicks) were extracted from the cropped
images and subsequently used in different combinations to predict la-
boratory-measured clay, silt, and sand values via RF and CNN algo-
rithms. Results indicated high prediction accuracy for clay and sand,
with moderate prediction accuracy for silt. Among all image-extracted
features, color features showed the maximum influence on the model
performance. An Android-based application based on the calibrated
CNN model was developed. This clearly exhibited the potential of the
proposed system for rapid and cost-effective soil textural analysis. More
research is warranted to measure the impacts of soil moisture and high
SOM on the model prediction performance to extend the approach for
predicting soil texture on-site.
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