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Agradeço cordialmente aos professores Doutores Geovani Nunes Gripaglia, Gilson do

ii



iii

Nascimento Silva e João Xavier da Cruz Neto por aceitarem o convite para participar

da Banca Examinadora da defesa de Dissertação e pelas valiosas contribuições. Muito

obrigado pela atenção e pelo cuidado nas correções que enriquecem a versão final deste

trabalho.

Agradeço a todos os professores do Departamento de Matemática da UFPI, comprometi-
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Agradeço às Instituições de Ensino Superior públicas que possibilitam o acesso a uma

educação de qualidade a todos; em particular, agradeço à Universidade Federal do Piaúı
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Resumo

Estudamos o problema de minimização em uma classe de funções possivelmente não

convexas e não diferenciáveis, dadas pela diferença de duas funções convexas. Abordamos

esse problema por meio de três métodos estabelecidos na literatura: o Difference of Con-

vex Algorithm (DCA), proposto por Tao e Souad [46]; o Boosted Difference of Convex

Algorithm (BDCA), formulado por Aragón Artacho e Vuong [4], que considera uma busca

monótona em cada iterada a partir da solução encontrada pelo DCA; e o mais recente

Non-monotone Boosted Difference of Convex Algorithm, proposto por Fereira, Santos e

Souza [21], que considera uma busca não monótona no BDCA, habilitando um posśıvel

crescimento na função objetivo controlado por um parâmetro. Além disso, propomos uma

abordagem inexata para o nmBDCA e, sob hipóteses razoáveis, recuperamos os resulta-

dos de convergência e complexidade da sua versão exata. Realizamos alguns experimentos

numéricos para ilustrar os algoritmos.

Palavras-chave: Funções DC; Algoritmos DC; nmBDCA inexato; Ilustrações numéri-

cas.
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Abstract

We studied the minimization problem in a class of functions that are possibly non-

convex and non-differentiable, given by the difference of two convex functions. We ap-

proached this problem through three methods established in the literature: the Difference

of Convex Algorithm (DCA), proposed by Tao and Souad [46]; the Boosted Difference of

Convex Algorithm (BDCA), formulated by Aragón Artacho and Vuong [4], which consid-

ers a monotone line search at each iteration starting from the solution found by DCA; and

the latest Non-monotone Boosted Difference of Convex Algorithm, proposed by Ferreira,

Santos, and Souza [21], which incorporates a non-monotone line search in BDCA, enabling

potential growth in the objective function controlled by a parameter. Additionally, we

present an inexact approach for nmBDCA and, under reasonable assumptions, recover

the convergence and complexity results of its exact version. We conducted numerical

experiments to illustrate the algorithms.

Key-words: DC Function; DC Algorithms; Inexact nmBDCA; Numerical illustrations.
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Introduction

In this work, we consider the problem of minimizing a function f : Rn → R that is

possibly non-convex and non-differentiable, which can be expressed as the difference of

two convex functions g, h : Rn → R. Functions with this representation are called DC

(difference of convex) functions, and the DC problem that we approached consists of:

min
x∈Rn

f(x) = g(x)− h(x). (1)

Note that when we set h to be identically zero, we retrieve the classical convex minimiza-

tion problem. This already introduces (1) as an even more general problem.

The DC minimization problem has been studied and developed over the past decades

and applied to many relevant problems, such as image processing [34], compressed sens-

ing [49], location problems [2, 11, 13], sparse optimization problems [24], the minimum

sum-of-squares clustering problem [4, 17, 40], the bilevel hierarchical clustering problem

[38], clusterwise linear regression [8], the multicast network design problem [23], and mul-

tidimensional scaling problem [1, 4, 10]. Recently, there have also been works directed

towards support vector machines [22], Value-at-Risk Constrained Portfolio Optimization

[47], and training deep neural networks [16]. More applications can be found in [48, Part

II].

Many methods can be found in the literature to solve the DC problem (1), among

which we mention subgradient-type methods [10, 31], proximal subgradient methods [15,

36, 43, 44], proximal bundle methods [18], codifferential methods [7], and inertial methods

[20]. However, the Difference of Convex Algorithm (DCA) proposed by Tao and Souad

[46] was the first to consider the problem (1) with the particularity of its DC structure.

The interpretation of DCA is simple: at each iteration k, the second DC component is

replaced by a linear minorant, which reduces the problem to minimizing a convex problem

in each iteration. Since then, many variants of DCA have emerged, and their theoretical

and practical properties have been studied over the years.
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In addition to DCA, we have studied and presented the Boosted Difference of Convex

Algorithm (BDCA) proposed by Aragón Artacho and Vuong [4] (see also [3]), whose

key idea is to define, at each iteration k, a descent direction for f based on the solution

computed by DCA. This subtle modification further decreases the objective function value

compared to DCA, making the method in some sense accelerated. The improvement

in performance compared to DCA will be demonstrated in some examples distributed

throughout the corresponding section. However, achieving this descent property comes at

the cost of assuming differentiability of the first DC component. As we will see, removing

this hypothesis can result in an ascent direction, making it impossible to perform a search

that decreases the objective function value.

To overcome this drawback (differentiability for the first DC component) Ferreira,

Santos, and Souza [21] propose a method that allows controlled growth of f using a

parameter. This approach extends the applicability of their method to cases where both

components may be non-differentiable. In practice, the work by Ferreira, Santos, and

Souza [21] has already shown this method to be highly effective in solving several well-

established examples in the literature.

Finally, we acknowledge that when implementing an algorithm computationally, we are

susceptible to the fact that subproblem solutions are calculated approximately. However,

convergence properties of both BDCA and nmBDCA are demonstrated based on the exact

solution of the subproblems. Therefore, motivated to ensure convergence of these methods

when subproblem solutions are computed inexactly, we propose a new algorithm called

Inexact Non-monotone Boosted Difference of Convex which considers inexact computation

of the subproblems. Under reasonable assumptions, this algorithm restores convergence

properties and complexity similar to its exact counterpart.

This work is divided as follows: in Chapter 1 we compiled useful theoretical results

for the development of each of the algorithms, including their convergence analyses. In

Chapter 2, we approached the DCA and emphasized its motivation and relevance, in ad-

dition to the convergence results and some illustrations of its computational performance.

In Chapter 3, the BDCA is presented, establishing its definition, convergence analysis and

some graphs of its computational performance. In Chapter 4 we presented the definition

and properties of the nmBDCA comparing its computational performance with DCA.

Finally, we present new results on an inexact version of nmBDCA.
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Chapter 1

Concepts and results of optimization

In this chapter, we will introduce the main theoretical results that will support this

entire work. The vast majority of the definitions and results presented here can be found

in books on convex analysis; see [12, 35, 26, 28].

1.1 Convex Sets and Functions

Definition 1.1.1. A set C ⊂ Rn is called convex if for any x, y ∈ C, and λ ∈ [0, 1] it

holds that λx+ (1− λ)y ∈ C.

Definition 1.1.2. Let C ⊂ Rn be a convex set. A function f : C → R is called convex

if for any x, y ∈ C and λ ∈ [0, 1], it holds

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y). (1.1)

when the inequality in (1.1) is strict for any x, y ∈ C and λ ∈ (0, 1), then f is called

strictly convex.

Definition 1.1.3. Let C ⊂ Rn a convex set. A convex function f : C → R is called

strongly convex with modulus ρ > 0 if for all x, y ∈ C and λ ∈ [0, 1] we have

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)− ρ

2
λ(1− λ)||x− y||2.

As we can observe, it is immediate that every strongly convex function with parameter

ρ > 0 is, in particular, strictly convex and therefore convex. When dealing with convex

and strongly convex functions, it is very common to resort to characterizations equivalent

to the definitions presented above. We will discuss the most relevant ones for this work

in Section 1.2.1, using the definition of subgradient.

3



Proposition 1.1.1. Let f : Rn → R be a strongly convex function with modulus ρ > 0.

Then f has a unique minimizer.

Proof. See [9, Theorem 5.25].

The Fenchel conjugate of a convex function is a function that plays a fundamental role

in convex duality and convex optimization problems. Below, we present its definition and

some properties.

Definition 1.1.4. Let ϕ : Rn → R be a function (not necessarily convex), its Fenchel

conjugate ϕ∗ : Rn → (−∞,+∞] is

ϕ∗(v) := sup {⟨v, x⟩ − ϕ(x) |x ∈ Rn} , v ∈ Rn.

Proposition 1.1.2. Let ϕ : Rn → R a convex function. Then the following statements

are equivalent.

(i) x∗ ∈ ∂ϕ(x);

(ii) ϕ(x) + ϕ∗(x∗) = ⟨x∗, x⟩;

(iii) x ∈ ∂ϕ∗(x∗).

Proof. See [9, Theorem 4.19].

An important result concerning convex functions is their continuity within the interior

of their domain. Before ensuring this fact, we define what a Lipschitz function is.

Definition 1.1.5. A function f : D ⊂ Rn → R is called Lipschitz continuous if there

exists L > 0, called the Lipschitz constant, such that

|f(x)− f(y)| ≤ L∥x− y∥, ∀x, y ∈ D.

We say that f is locally Lipschitz continuous at x̄ ∈ D when there exists δ > 0 such

that f is Lipschitz on D ∩ B(x̄; δ). When f is locally Lipschitz for all x ∈ D, we say

simply that f is locally Lipschitz.

Proposition 1.1.3. Let f : Rn → R be a convex function, then f is locally Lipschitz. In

particular, f is continuous on C.

Proof. See [9, Theorem 2.21].

4



Convex functions are not necessarily differentiable. However, we will show that a

convex function has directional derivatives. In Section 1.2, we will present Fenchel subd-

ifferential and Clarke subdifferential, which are a kind of generalization of the derivative.

Theorem 1.1.1. Let f : Rn → R be a convex function. Then, for all x ∈ Rn, f is

differentiable in each direction d ∈ Rn. Moreover,

f(x+ αd) ≥ f(x) + αf ′(x; d), ∀α ∈ R+,

where f ′(x; d) := lim
α↓0

f(x+ αd)− f(x)

α
is the directional derivative of f at the point x in

the direction d.

In Sections 1.2.1 and 1.2.3, we obtain relations between directional derivative and the

Fenchel and Clarke subdifferential of a function.

1.2 Subdifferential calculus

In this section, we present some well-established subdifferentials in the literature that

will be used throughout this work. The subdifferentials defined here can be interpreted

as set-valued operators. We say that F : Rn ⇒ Rn is a set-valued operator when for each

x ∈ Rn we associate a subset F (x) ⊂ Rn.

1.2.1 Fenchel subdifferential

The Fenchel subdifferential is classical in the study of convex functions and arises as a

natural generalization of the derivative concept in the case where the function is convex.

However, its definition does not require the function to be convex. Through it, we can

establish important properties of convex and strongly convex functions, as well as an

optimality condition that will be presented in this section.

Definition 1.2.1. Let f : Rn → R a function and x ∈ Rn. An element v ∈ Rn is called

a subgradient of f at x if

f(y) ≥ f(x) + ⟨v, y − x⟩

for all y ∈ Rn. The set of all subgradients of f at x is called the subdifferential of the

function at this point and is denoted by ∂f(x).

5



Note that the subgradient of f at x defines a linear approximation of f whose graph lies

below that of f and whose value coincides with f at the point x. Next, we present a theo-

rem that establishes a connection between the Fenchel subdifferential and the directional

derivative of the function.

Theorem 1.2.1. Let f : Rn → R be a convex function. Then for every x ∈ Rn, the set

∂f(x) is convex, compact, and non-empty. Moreover, for any d ∈ Rn, we have

f ′(x; d) = max
y∈∂f(x)

⟨y, d⟩. (1.2)

Proof. See [35, Proposition 2.47].

In the discussion of the well-definition of the algorithms studied in this work, we will

see the importance of the previous theorem in ensuring that it is possible to select an

element from a subdifferential.

Proposition 1.2.1. If a convex function f : Rn → R is differentiable at the point x ∈ Rn,

then the set ∂f(x) contains a single element. In this case, ∂f(x) = {∇f(x)}.

Proof. See [9, Theorem 3.33].

Theorem 1.2.2. Let f : Rn → R be a convex function. Then, x∗ ∈ Rn is a minimizer of

f if, and only if

0 ∈ ∂f(x).

Proof. See [9, Theorem 3.63].

In other words, we see that the concept of the Fenchel subdifferential is a natural

generalization of the derivative for convex functions. Note that when f is differentiable,

if x∗ is a local minimum, then ∇f(x∗) = 0, which means 0 ∈ ∂f(x∗).

Proposition 1.2.2. Let f : Rn → R be a convex function. Let
{
xk
}
k∈N be a sequence

such that xk → x, as k → +∞, and wk ∈ ∂f(xk), for all k ∈ N, then the sequence{
wk
}
k∈N is bounded and all cluster points of

{
wk
}
k∈N belong to ∂f(x).

Proof. See [27, Proposition 6.2.1].

Corollary 1.2.1. If f : Rn → R is a convex and differentiable function, the gradient

mapping ∇f : Rn → Rn is continuous.

6



Proof. See [41, 9.20 Corollary].

Below, we present some characterizations of convex and strongly convex functions

associated with the Fenchel subdifferential.

Theorem 1.2.3. The following statements are equivalent:

(i) f : Rn → R is strongly convex with modulus ρ > 0;

(ii) f(y) ≥ f(x) + ⟨v, y − x⟩+ ρ

2
||y − x||2, for all x, y ∈ Rn and v ∈ ∂f(x).

(iii) The point set operator ∂f : Rn ⇒ Rn is strongly monotone with modulus ρ > 0, i.e.,

⟨u− v, x− y⟩ ≥ ρ||x− y||2,

for all u ∈ ∂f(x), v ∈ ∂f(y) and for all x, y ∈ Rn.

Proof. See [9, Theorem 5.24].

1.2.2 The ε-subdifferential

Definition 1.2.2. Let f : Rn → R be a convex function and ε ≥ 0. We say that y ∈ Rn

is an ε-subgradient of f at point x ∈ Rn if

f(z) ≥ f(x) + ⟨y, z − x⟩ − ε, ∀z ∈ Rn.

The set of all ε-subgradients of f at x, denoted by ∂εf(x), is called the ε-subdifferential of

f at x.

An ε-subgradient of f at x defines a linear function whose value at x is f(x)− ε and

whose graph lies below that of f . As we can see,

∂ε1f(x) ⊂ ∂ε2f(x), ∀ε2 > ε1 ≥ 0.

In particular,

∂f(x) = ∂0f(x) ⊂ ∂εf(x), ∀x ∈ Rn, ∀ε > 0.

Hence, ε−subdifferential is always non-empty. Moreover, it follows immediately from

definition than

0 ∈ ∂εf(x) ⇐⇒ f(x) ≤ inf
z∈Rn

f(z) + ε,

which represents an approximate optimality condition. In this case, if 0 ∈ ∂εf(x
∗), then

we say that x∗ is a ε-critical point.
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Theorem 1.2.4. Let f : Rn → R be a convex function. Then, for all x ∈ Rn and ε ≥ 0,

the set ∂εf(x) is and non-empty, convex and compact.

Proof. See [26, Theorem 1.14].

The following proposition will be used in the convergence analysis of InmBDCA, en-

suring that the accumulation points of the sequence generated by the algorithm, if any,

are critical in the DC sense.

Proposition 1.2.3. Let f : Rn → R be a convex function,
{
xk
}
k∈N ⊂ Rn converging to

x∗, {εk}k∈N ⊂ R+ converging to ε∗, and
{
wk
}
k∈N converging to w∗, with wk ∈ ∂εkf(x

k)

for all k ∈ N. Then w∗ ∈ ∂εf(x
∗).

Proof. See [26, Proposition 4.1.1].

1.2.3 Clarke subdifferential

An important generalization of the concept of subdifferential is the definition of the

Clarke subdifferential. We know, by Proposition 1.1.3, that every convex function is

locally Lipschitz continuous; however, the converse is not true. Thus, there arises the

need for a theory that extends the scope of subdifferential calculus and recovers its main

properties when the function under consideration is, in particular, convex.

Let f : Rn → R be a locally Lipschitz continuous function at x ∈ Rn, and d ∈ Rn be

a direction. The Clarke directional derivative of f at x in the direction of d, denoted by

f ◦(x; d), is defined as follows:

f ◦(x; d) := lim sup
y→x
t↓0

f(y + td)− f(y)

t
.

With this, we have the following definition.

Definition 1.2.3. Let f : Rn → R be a locally Lipschitz continuous function at x ∈ Rn,

and d ∈ Rn be a direction. The Clarke subdifferential of f at x, denoted by ∂Cf(x),

is defined by

∂Cf(x) := {w ∈ Rn | ⟨w, d⟩ ≤ f ◦(x; d), ∀d ∈ Rn} ,

or, equivalently,

∂Cf(x) = conv

{
lim

i→+∞
∇f(xi) | xi → x and ∇f(xi) exists

}
.
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Proposition 1.2.4. Let f : Rn → R be a locally Lipschitz function. Then, for all x ∈ Rn,

there hold:

(i) ∂Cf(x) is a nonempty, convex, compact subset of Rn and ∥v∥ ≤ Kx, for all v ∈

∂Cf(x), where Kx > 0 is the Lipschitz constant of f around x;

(ii) f ◦(x; d) = max{⟨v, d⟩ : v ∈ ∂Cf(x)}.

Proof. See [12, Proposition 2.1.2].

The following proposition demonstrates that the Clarke subdifferential further extends

the concept of derivative, being extended to locally Lipschitz continuous functions. In this

sense, we will see that when the function is convex, the Clarke subdifferential recovers the

Fenchel subdifferential.

Proposition 1.2.5. When f : Rn → R is convex, then ∂Cf(x) coincides with the Fenchel

subdifferential at x in the sense of convex analysis, and f ◦(x; v) coincides with the direc-

tional derivative f ′(x; v) for each v ∈ Rn.

Proof. See [12, Proposition 2.2.7].

Proposition 1.2.6. Let f : Rn → R be a locally Lipschitz continuous function. Then,

for any scalar s, one has

∂C(sf)(x) = s∂Cf(x).

Proof. See [12, Proposition 2.3.1].

Theorem 1.2.5. Let fi : Rn → R, i = 1, . . . , N , be locally Lipschitz continuous functions.

Then, for any scalars si, one has

∂C

(
N∑
i=1

sifi

)
(x) ⊂

N∑
i=1

si∂Cfi(x),

and equality holds if all but at most on of fi are continuously differentiable (fi ∈ C1(Rn))

at x.

Proof. See [12, Corollary 2, p. 39].

Definition 1.2.4. The direction d ∈ Rn is called a descent direction for f : Rn → R at

x ∈ Rn, if there exists ϵ > 0 such that for all t ∈ (0, ϵ],

f(x+ td) < f(x).
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Proposition 1.2.7. Let f : Rn → R be a locally Lipschitz continuous function at x ∈ Rn.

The direction d ∈ Rn is a descent direction for f at x if

⟨s, d⟩ < 0 for all s ∈ ∂Cf(x) or f ◦(x; d) < 0.

Proof. See [6, Theorem 4.5].

In the following section, we will see that functions that can be expressed as differences

of convex functions are locally Lipschitz continuous. As we have seen before, the Clarke

subdifferential can be understood as an extension of the derivative concept. In this regard,

the following proposition provides a sufficient condition for a point to be a local minimum

or maximum of a locally Lipschitz continuous function.

Proposition 1.2.8. Let f : Rn → R be a locally Lipschitz continuous function. If f

attains a local minimum or maximum at x∗, then 0 ∈ ∂Cf(x
∗).

Proof. See [12, Proposition 2.3.2].

With this, we say that a point x ∈ Rn is called Clarke stationary for f when

0 ∈ ∂Cf(x).

1.3 Difference of Convex Functions

In this section, we will present a class of functions that can be written as the difference

between two convex functions, along with definitions and basic results. These functions,

called DC functions, will be considered in the context of minimization problems under

certain assumptions.

We will address DC functions defined on Rn. A function f : Rn → R will be called a

difference of convex function, or simply a DC function, if there exists a pair of convex

functions g, h : Rn → R, respectively the first and the second components, such that f(x)

is the difference

f(x) = g(x)− h(x), ∀x ∈ Rn.

A function is locally DC if each point of its domain has a convex neighbourhood wherein

it is DC. The set of DC functions with the usual operations of function addition and

scalar multiplication defines a vector space, denoted by DC(Rn). Moreover, DC(Rn) is
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the smallest vector space containing all convex functions (in this case, also continuous)

defined on a given set; see [5].

It is immediate that any convex function can be written as a difference of convex

functions; one simply considers the second component to be identically zero. The following

results provide a wide range of examples of DC functions.

Proposition 1.3.1. Every function f ∈ C2(Rn) is DC on any compact convex set C ⊂

Rn.

Proof. See [48, Proposition 4.2].

Theorem 1.3.1. (Hartman) Every function locally DC on Rn is globally DC on Rn.

Proof. See [25, (I)] or [48, Proposition 4.3].

In Proposition 1.3.1, considering δ > 0, x0 ∈ Rn, and C = B[x0; δ], we have that f is

DC on B(x0; δ). Therefore, by Theorem 1.3.1, f is globally DC, from which we conclude

that every function f ∈ C2(Rn) is DC.

Finding a decomposition for a DC function may not be an easy task. However, once

one decomposition is found, we can obtain infinitely many others from it. Hence a DC

function does note have just one DC decomposition.

Let f(x) = g0(x) − h0(x) be a DC function on Rn, with g, h : Rn → R being its DC

components. If Φ : Rn → R is convex, we obtain a new decomposition:

f(x) = g(x)− h(x),

where g(x) = g0(x) + ϕ(x) and h(x) = h0(x) + ϕ(x). We can further assume ϕ(x) to

be strongly convex with modulus ρ > 0; in this case, g(x) = g0(x) + ϕ(x) and h(x) =

h0(x) + ϕ(x) become strongly convex with modulus ρ > 0, by Proposition 1.2.3. The

parameter ρ > 0 can be easily chosen, for example, if we define ϕ(x) = ρ
2
∥x∥2, which is

strongly convex with modulus ρ > 0.

Choosing a DC decomposition whose components are strongly convex can facilitate the

verification of certain theoretical results. However, we will also analyze the performance

of the method when modifying the parameter ρ > 0.

We denote the DC minimization problem as follows:

min
x∈Rn

f(x) = g(x)− h(x), (1.3)
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where f ∈ DC(Rn), and g, h : Rn → R are its DC components. In this context, it is

necessary to introduce the concept of critical point in the DC sense. However, beforehand,

we note that DC functions inherit the property of being locally Lipschitz from their convex

components.

Proposition 1.3.2. Every function f ∈ DC(Rn) is locally Lipschitz.

Proof. Consider f(x) := g(x) − h(x), where g, h : Rn → R are its DC components. By

Proposition 1.1.3, g(x) and h(x) are locally Lipschitz. Therefore, for any x0 ∈ Rn, there

exist δ1, δ2, L1, L2 > 0 such that

|g(x)− g(y)| ≤ L1∥x− y∥ ∀x, y ∈ B(x0, δ1)

and

|h(x)− h(y)| ≤ L2∥x− y∥, ∀x, y ∈ B(x0, δ2).

Thus,

|f(x)− f(y)| = |g(x)− h(x)− g(y) + h(y)|

≤ |g(x)− g(y)|+ |h(y)− h(x)|

≤ (L1 + L2)∥x− y∥,

for all x, y ∈ B(x0, δ), where δ = min{δ1, δ2}. Therefore, f is locally Lipschitz.

Thus, we can consider the Clarke subdifferential of f applied at x ∈ Rn as defined in

Definition X. Let f(x) = g(x) − h(x) be a DC function on Rn. From Theorem 1.2.5, we

have that ∂Cf(x) ⊂ ∂Cg(x) − ∂Ch(x). By Proposition 1.2.5, the Fenchel subdifferential

coincides with the Clarke subdifferential when the function is convex, then we obtain

∂Cf(x) ⊂ ∂g(x)− ∂h(x).

The following proposition presents a necessary condition for a point x∗ to be a local

minimum (1.3).

Proposition 1.3.3. Let g, h : Rn → R convex functions. If x∗ is a local minimizer of

f : Rn → R given by f(x) = g(x)− h(x), for all x ∈ Rn, then

∂h(x∗) ⊂ ∂g(x∗). (1.4)

Points satisfying (1.4) are called inf-stationary.
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Proof. See [45, Theorem 2].

According to [30], the inf-stationary condition (1.4) is not easy to be verified in practice

due to difficulty of calculating the subdifferentials of the DC components g and h. Thus,

in numerical algorithms, a relaxed form of condition (1.4) is often used, which requires

that

∂g(x∗) ∩ ∂h(x∗) ̸= ∅. (1.5)

A point satisfying (1.5) is called a critical point. Due to previous proposition, condition

(1.5) is also a necessary condition for a local optmality.

There are some interesting relationships between inf-stationary, Clarke-stationary, and

critical points mentioned in [30]. These relationships are summarized in the following

figure extracted from [29]:

Figure 1.1: Relationship between different stationary concepts [30].

In Figure 1.1, the DC function f : Rn → R given by f(x) = f1(x) − f2(x) was

considered. Note that every inf-stationary point is Clarke stationary. Furthermore, every

Clarke stationary point is critical. However, the converse is not generally true. For

criticality to imply Clarke stationary, we need to assume that f1 or f2 is differentiable.

Finally, Clarke stationary implies inf-stationary when the second DC component f2 is

differentiable.

Given the formulation of the DC programming problem and its wide range of appli-

cations, there arises the need to develop methods to solve this type of problem, such as

subgradient-type [10, 31], proximal subgradient [15, 36, 43, 44], proximal bundle [18], cod-

ifferential [7], and inertial methods [20]. However, we will focus on the following methods:
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the Difference of Convex Algorithm (DCA), proposed in [46]; the Boosted Difference of

Convex Algorithm (BDCA), proposed in [4]; and we propose an inexact version of the

Non-monotone Boosted Difference of Convex Algorithm (nmBDCA), proposed in [21].

For further insights into the theory of DC functions, see the following surveys: [5],

[19], and [32].
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Chapter 2

The Difference of Convex Algorithm

The vector space of DC functions, denoted by DC(Rn), contains the set of real convex

functions defined on Rn and thus broadens the scope of techniques for solving minimization

problems.

We recall the problem DC in (1):

min
x∈Rn

f(x) = g(x)− h(x),

where g, h : Rn → R are convex functions.

Throughout this chapter, we make the following assumptions:

(H1) g, h : Rn → R are both strongly convex with modulus ρ > 0;

(H2) f ∗ := inf
x∈Rn

{f(x) = g(x)− h(x)} > −∞.

Observe that assumption (H1) is not theoretically restrictive. As mentioned in Section

1.3, given two convex functions, g and h, we can add a strongly convex term
ρ

2
||x||2 to both

to achieve a new decomposition, with components strongly convex with modulus ρ > 0.

The hypothesis (H2) is common in the context of DC programming; see [3, 4, 15, 21].

2.1 The algorithm

The Difference of Convex Algorithm (DCA), proposed by Tao and Souad [46], was

the first to address problem (2) by exploring its DC structure. Originally, the DCA

was proposed as in Algorithm 1, but with a subtle difference: instead of (2.1), the

subproblem was to find yk ∈ ∂g∗(wk), where g∗ is the Fenchel conjugate of the function
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g. Proposition 1.1.2 implies that to calculate yk ∈ ∂g∗(wk) is equivalent to wk ∈ ∂g(yk),

that it is, 0 ∈ ∂g(yk) − wk, i.e., yk = argminx∈Rn g(x)− ⟨wk, x− xk⟩, which proves that

both subproblems are equivalent.

Next, we present the Difference of Convex Algorithm (DCA) to solve (2).

Algorithm 1 Difference of Convex Algorithm (DCA)[46]

1: Choose an initial point x0 ∈ Rn and set k := 0.

2: Choose wk ∈ ∂h(xk) and compute yk the solution of the following convex subproblem

min
x∈Rn

g(x)− ⟨wk, x− xk⟩. (2.1)

3: If yk = xk then STOP and return xk. Otherwise, set xk+1 := yk, k := k+1 and go

to Step 2.

Remark 2.1.1. By Theorem 1.2.1, ∂h(xk) ̸= ∅ for all k ∈ N. Furthermore, by item (ii)

of Theorem 1.2.3, the function at (2.1) is strongly convex with modulus ρ > 0. As a con-

sequence of Proposition 1.1.1 the subproblem (2.1) has a solution. Thus, the Algorithm

1 is well-defined.

Lemma 2.1.1. If yk = xk for some k ∈ N, then xk is a critical point of f .

Proof. Indeed, the expression at (2.1) is equivalent to

wk ∈ ∂g(yk).

Indeed, suponha que yk seja solução de (2.1). Then, since the subproblem function is, in

particular, convex, we have that

0 ∈ ∂
(
g(·)− ⟨wk, ·⟩+ ⟨wk, xk⟩

)
(yk).

From Proposition 1.2.1 and Theorem 1.2.2, it follows that 0 ∈ ∂g(yk) − wk, that is,

wk ∈ ∂g(yk). On the other hand, wk ∈ ∂h(xk), due to Step 2. Consequently, if yk = xk,

it follows that ∂g(xk) ∩ ∂h(xk) ̸= ∅. Thus, xk is a critical point.

The subproblem in (2.1) consists of minimizing the difference between g(x) and a

linear approximation of h(x). In fact, since wk ∈ ∂h(xk), we have that

h(x) ≥ h(xk) + ⟨wk, x− xk⟩, ∀x ∈ Rn,
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thus,

g(x)− h(x) ≤ g(x)− ⟨wk, x− xk⟩ − h(xk), ∀x ∈ Rn.

Ignoring the constant term h(xk), we obtain exactly the expression in (2.1) on the right-

hand side of the last inequality.

2.2 Convergence analysis

The aim of this section is to present convergence analysis results of the DCA.

Proposition 2.2.1. The sequence
{
xk
}
k∈N generated by Algorithm 1 satisfies one of

the following statements:

(i) The Algorithm 1 terminates at a critical point;

(ii) The sequence
{
f(xk)

}
k∈N is decreasing, i.e., f(xk+1) < f(xk), for all k ∈ N.

Proof. Indeed, according Step 3, the Algorithm 1 terminates when yk = xk. By Lemma

2.1.1, xk is a critical point, and this proves the item (i). Suppose that xk+1 ̸= xk,∀k ∈ N.

Since wk ∈ ∂h(xk)∩ ∂g(xk+1) for any k ∈ N, applying the item (iii) of the Theorem 1.2.3

we have

g(xk)− g(xk+1) ≥ ⟨wk, xk − xk+1⟩+ ρ

2
||xk − xk+1||2 (2.2)

and

h(xk+1)− h(xk) ≥ ⟨wk, xk+1 − xk⟩+ ρ

2
||xk+1 − xk||2 (2.3)

By adding the inequalities (2.2) and (2.3) term by term, we have

[g(xk)− h(xk)]− [g(xk+1)− h(xk+1)] ≥ ⟨wk, xk − xk+1⟩+ ⟨wk, xk+1 − xk⟩+ ρ||xk − xk+1||2

= ⟨wk, xk − xk+1⟩ − ⟨wk, xk − xk+1⟩+ ρ||xk − xk+1||2

= ρ||xk − xk+1||2.

Then

ρ||xk − xk+1||2 ≤ f(xk)− f(xk+1), ∀k ∈ N. (2.4)

In particular, xk+1 ̸= xk implies ||xk − xk+1||2 > 0. Hence,

0 < f(xk)− f(xk+1), ∀k ∈ N.

Thus, f(xk+1) < f(xk) for any k ∈ N and it proves that
{
f(xk)

}
is decreasing.
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Corollary 2.2.1. If
{
xk
}
k∈N is a sequence generated by Algorithm 1, then the sequence{

f(xk)
}
k∈N is convergent.

Proof. This follows immediately from the fact that f is lower-bounded, by assumption

(H2), and
{
f(xk)

}
k∈N is decreasing.

Proposition 2.2.2. If
{
xk
}
k∈N is a sequence generated by Algorithm 1, then

+∞∑
k=0

||xk − xk+1||2 < +∞,

and ||xk − xk+1|| → 0 as k → +∞.

Proof. Considering the partial sum at inequality (2.4):

0 ≤
N∑
k=0

ρ||xk − xk+1||2 ≤
N∑
k=0

[f(xk)− f(xk+1)]

we obtain

0 ≤
N∑
k=0

ρ||xk − xk+1||2 ≤ f(x0)− f(xN+1)

By assumption (H2), f ∗ ≤ f(xN+1), for all N ∈ N, which implies that −f(xN+1) ≤ −f ∗,

for all N ∈ N. Therefore,

0 ≤
N∑
k=0

ρ||xk − xk+1||2 ≤ f(x0)− f ∗,∀k ∈ N. (2.5)

Taking the limit as N → +∞ at (2.5) we have

+∞∑
k=0

||xk − xk+1||2 < +∞.

In particular, ||xk − xk+1|| → 0 as k → +∞.

Remark 2.2.1. Note that, by taking the limit in (2.4) as k → +∞ and using Corollary

2.2.1, we can already obtain lim
k→+∞

||xk − xk+1|| = 0.

Remark 2.2.2. When we consider a decomposition of f(x) where the components g(x)

and h(x) are not strongly convex, then the sequence
{
∥xk − xk+1∥

}
k∈N may not converge

to 0. See the following example taken from [39].

Example 2.2.1. Consider g, h : R → R as convex functions defined as follows: g(x) =

sup{−x, 0, x − 1} and h(x) = sup{−x, 0}. The functions g and h are piecewise linear
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and convex, but neither strongly convex nor strictly convex. Starting DCA from the initial

point x0 ∈ (0, 1), for example, x0 := 0.1, we obtain w0 ∈ ∂h(x0) = {0}, and x1 ∈

argmin{g(x) − ⟨w0, x − x0⟩} = [0, 1] (subproblem (2.1)). Choosing x1 = 0.9, we then

compute w1 ∈ ∂h(x1) = {0}. Thus, x2 ∈ argmin{g(x)−⟨w1, x−x1⟩} = [0, 1] (subproblem

(2.1)). Setting x2 = 0.1 and proceeding in this manner, DCA could generate a sequence

{xk}k∈N ⊂ (0, 1) such as (0.1, 0.9, 0.1, 0.9, . . .). Hence, {∥xk − xk+1∥}k∈N is a constant

sequence (0.8, 0.8, 0.8, . . .) whose limit is nonzero. In this case, {∥xk−xk+1∥}k∈N does not

satisfy Proposition 2.2.2. Note that the sequence {f(xk)} is the constant zero-sequence,

which is convergent but without verifying item (ii) of Proposition 2.2.1.

Theorem 2.2.1. Every cluster point of the sequence
{
xk
}
k∈N generated by Algorithm

1, if any, is a critical point.

Proof. Let x∗ be a critical point of
{
xk
}
k∈N. Then there exists a subsequence

{
xkj
}
j∈N,

such that lim
j→∞

xkj = x∗. In particular,
{
xkj
}
j∈N is bounded.

We affirm that lim
j→∞

xkj+1 = x∗. Indeed, by triangular inequality, we have that

||xkj+1 − x∗|| = ||(xkj+1 − xkj) + (xkj − x∗)||

≤ ||xkj+1 − xkj ||+ ||xkj − x∗||.

Then,

||xkj+1 − x∗|| ≤ ||xkj+1 − xkj ||+ ||xkj − x∗||, ∀j ∈ N. (2.6)

Taking the limit as j → ∞ at (2.6) and applying the Proposition 2.2.2, we have that

lim
j→+∞

||xkj+1 − x∗|| = 0, hence lim
j→+∞

xkj+1 = x∗.

By the boundedness of
{
xkj
}
j∈N and applying the Proposition 1.2.2, we obtain the bound-

edness of
{
wkj
}
j∈N, where wkj ∈ ∂h(xkj), for all j ∈ N.

The first-order optimality condition for (2.1) at k = kj implies

wkj ∈ ∂g(xkj+1).

Without loss of generality, we suppose
{
wkj
}
j∈N convergent. Therefore,

wkj ∈ ∂g(xkj+1) ∩ ∂h(xkj),∀j ∈ N.

By Proposition 1.2.2, we have that

∂g(x∗) ∩ ∂h(x∗) ̸= ∅.

Therefore, x∗ is a critical point.
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2.3 Numerical illustration

The numerical illustrations in this section were conducted using MATLAB software.

The initial points were randomly chosen within the box [−10, 10] × [−10, 10]. To solve

the subproblems, we used the fminsearch toolbox with the inner stop rule:

optimset(’TolX’,1e-7,’TolFun’,1e-7). The stopping criterion for the algorithm was

||xk+1 − xk|| < 10−5.

Example 2.3.1. Let f : R2 → R given by f(x, y) = 1
2
(x2 + y2) + |x|+ |y| − 5

2
x. We can

obtain a DC decomposition of f as follows: f(x, y) = g(x, y) − h(x, y), where g(x, y) =

x2+y2+ |x|+ |y|− 5
2
x and h(x, y) = 1

2
(x2+y2). The minimum point of f is xopt = (1.5, 0)

and the optimum value is fopt = −1.125.

To illustrate Algorithm 1 applied to Example 2.3.1, we consider the point x0 =

(−0.9259, 1.9735) chosen randomly, see Figure 2.2. In this case, the algorithm found

the global solution of the problem, x∗ = (1.5, 0). Since f(1.5, 0) = −1.125, we have

f ∗ = −1.125, which is the optimum value.

(a) Graph of the function f .
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Figure 2.1: Function f from Example 2.3.1.

However, the function f does not have only one critical point. When the point x0 =

(−1.7312,−0.9610) was randomly chosen, Algorithm 1 found the critical point x∗ =

(0.1613, 0.0763) · 1.0e − 7, which is very close to (0, 0), another critical point. However,

(0, 0) is not the global minimum of f .

Figure 2.3 illustrates the convergence of the sequence generated by Algorithm 1

approaching the critical point (0, 0). In Table 2.1, we gather the data from Algorithm
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Figure 2.2: Algorithm 1 for Example 2.3.1 with x0 = (−0.9259, 1.9735).
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Figure 2.3: Algorithm 1 for Example 2.3.1 with x0 = (−1.7312,−0.9610).

1 being run 100 times, starting from random points taken within the box [−10, 10] ×

[−10, 10]. In Table 2.1, mink represents the minimum number of iterations taken to find a

critical point; maxk denotes the maximum number of iterations required to find the critical

point; medk indicates the average number of iterations computed for the algorithm to find

a critical point. The columns mint, maxt, and medt denote, respectively, the minimum,

maximum, and average time for the algorithm to halt at a critical point. The last column

minglobal presents the percentage of times the algorithm found the optimal solution.

Table 2.1: 100 times with random initial points in [−10, 10]× [−10, 10].

Function f mink maxk medk mint (s) maxt (s) medt (s) minglobal

Example 2.3.1 2 20 19 0.0028469 0.20579 0.022441 77%

Example 2.3.2 11 14 13 0.01433 0.14426 0.020827 25%
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Example 2.3.2. Let f : R2 → R given by f(x, y) = x2 + y2 + x + y − |x| − |y|. We can

obtain a DC decomposition of f as follows: f(x, y) = g(x, y) − h(x, y), where g(x, y) =

3
2
(x2 + y2) + x+ y and h(x, y) = 1

2
(x2 + y2) + |x|+ |y|.

The function f from Example 2.3.2 has four critical points represented in its graph

in Figure 2.4. However, it has a unique global minimizer, which is the point xopt =

(−1,−1). To illustrate Algorithm 1 in Example 2.3.2, we consider the initial point

x0 = (−4.3119,−1.8040) chosen randomly. In Table 2.1, we can observe a trend of

Algorithm 1 finding the critical points of f .

Figure 2.4: Graph of the function f from Example 2.3.2.
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Figure 2.5: Algorithm 1 for Example 2.3.2 with x0 = (−4.3119,−1.8040).
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Chapter 3

The Boosted Difference of Convex

Algorithm

In the work by Aragón Artacho et al. [3], a method was proposed to solve the DC

problem in (1):

min
x∈Rn

f(x) = g(x)− h(x),

supposing that the DC components g, h : Rn → R are continuously differentiable

strongly convex functions with modulus ρ > 0 and infx∈Rn f(x) > −∞, named the

Boosted Difference of Convex Algorithm (BDCA). However, we focus on the work of

Aragón Artacho and Vuong [4], which relaxes the assumptions on the DC components

by assuming only g(x) is differentiable, consequently expanding the method’s applica-

bility to this specific class of non-differentiable functions. Thus, DBCA accelerates the

convergence of DCA thanks to a line search step.

Throughout this chapter, consider the DC programming problem (3) considering the

following assumptions:

(H1) g, h : Rn → R are both strongly convex with modulus ρ > 0;

(H2) f ∗ := inf
x∈Rn

f(x) > −∞.

(H3) g : Rn → R is differentiable.

The step size search structure considered in the algorithm requires assumption (H3);

otherwise, the obtained direction may be ascending (see Example 3.1.1 ). Assumptions

(H1) and (H2) are reasonable and have also been considered and discussed in Chapter

2.
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3.1 The algorithm

The Boosted Difference of Convex Algorithm (BDCA) was proposed by Aragón Arta-

cho and Vuong [4] as a generalization of the method proposed by Aragón Artacho et al.

[3]. The BDCA will be introduced in Algorithm 2.

Algorithm 2 Boosted Difference of Convex Algorithm (BDCA)[4].

1: Fix α > 0 and β ∈ (0, 1). Choose any initial point x0 ∈ Rn and set k := 0.

2: Choose wk ∈ ∂h(xk) and compute yk the solution of the following convex subproblem

min
x∈Rn

g(x)− ⟨wk, x− xk⟩. (3.1)

3: Set dk := yk − xk. If dk = 0 then STOP and return xk. Otherwise, choose any

λ̄k ≥ 0, and set λk := λ̄k. While f(yk + λkd
k) > f(yk)− αλk

2∥dk∥2 DO λk := βλk.

4: Set xk+1 := yk + λkd
k; set k := k + 1 and go to the Step 2.

Note that if λ̄k = 0, then the iterates of the BDCA coincide with the iterates of

the DCA. In this case, convergence results apply, particularly to the DCA. We saw in

Proposition 2.2.1 that, by setting xk+1 := yk, the image of f undergoes a decrease, i.e.,

f(yk) ≤ f(xk). Furthermore, we will show that by taking xk+1 in the direction of dk from

yk, we achieve an even greater decrease. This fact is the main idea behind the BDCA and

enhances the performance of the DCA in many applications.

Remark 3.1.1. Proceeding analogously to Remark 2.1.1, we verify that Step 2 is exe-

cutable. To complete the well-definition of Algorithm 2, consider the following proposi-

tion:

Proposition 3.1.1. For all k ∈ N, the following holds:

(i) f(yk) ≤ f(xk)− ρ∥dk∥2;

(ii) f ′(yk; dk) ≤ −ρ∥dk∥2;

(iii) For all k ∈ N, there exists some δk > 0 such that

f(yk + λdk) ≤ f(yk)− αλ2∥dk∥, ∀λ ∈ [0, δk] ,

and hence, the line search in Step 3 of BDCA terminates finitely.

Proof. Consider k ∈ N.
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(i) Since yk is the unique solution of (3.1), we have that∇g(yk)−wk = 0, i.e., ∇g(yk) =

wk. By the strong convexity of g and h, as wk ∈ ∂h(xk) we have

g(xk)− g(yk) ≥ ⟨wk, xk − yk⟩+ ρ

2
∥xk − yk∥2

and

h(yk)− h(xk) ≥ ⟨wk, yk − xk⟩+ ρ

2
∥yk − xk∥2.

By adding both the inequalities above term by term, we have

[g(xk)− h(xk)]− [g(yk)− h(yk)] ≥ ⟨wk, xk − yk⟩+ ⟨wk, yk − xk⟩+ ρ||xk − xk+1||2

= ⟨wk, xk − yk⟩ − ⟨wk, xk − yk⟩+ ρ||xk − yk||2

= ρ||xk − yk||2.

We recall that dk = yk − xk and f(x) = g(x)− h(x). Thus,

f(yk) ≤ f(xk)− ρ∥dk∥2.

(ii) By definition of one-side directional derivative, we have

f ′(yk; dk) = lim
λ↓0

f(yk + λdk)− f(yk)

λ

= lim
λ↓0

g(yk + λdk)− h(yk + λdk)−
(
g(yk)− h(yk)

)
λ

= lim
λ↓0

g(yk + λdk)− g(yk)

λ
− lim

λ↓0

h(yk + λdk)− h(yk)

λ
.

Since g is differentiable, we obtain

f ′(yk; dk) = ⟨∇g(yk), dk⟩ − lim
λ↓0

h(yk + λdk)− h(yk)

λ
. (3.2)

On the other hand, by convexity of h we can to choose u ∈ ∂h(yk), and then

h(yk + λdk)− h(yk) ≥ ⟨u, λdk⟩,

which implies
h(yk + λdk)− h(yk)

λ
≥ ⟨u, dk⟩, ∀λ > 0,

and hence,

lim
t↓0

h(yk + λdk)− h(yk)

λ
≥ ⟨u, dk⟩.
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Applying this fact in (3.2), we obtain

f ′(yk; dk) ≤ ⟨∇g(yk), dk⟩ − ⟨u, dk⟩

= ⟨∇g(yk)− u, dk⟩

= ⟨∇g(yk)− u, yk − xk⟩.

Therefore

f ′(yk; dk) ≤ ⟨∇g(yk)− u, yk − xk⟩. (3.3)

We recall that ∇g(yk) = wk ∈ ∂h(xk). The function h is strongly convex with

modulus ρ, then, by Proposition 1.2.3, ∂h is strongly monotone with modulus ρ.

Thus, since u ∈ ∂h(yk), it holds that

⟨∇g(yk)− u, xk − yk⟩ ≥ ρ∥xk − yk∥2.

Hence

⟨∇g(yk)− u, yk − xk⟩ ≤ −ρ∥xk − yk∥2.

The proof follows by combining the last inequality with (3.3).

(iii) If dk = 0 or λ = 0, there is nothing to prove. Otherwise, we have

lim
λ↓0

f(yk + λdk)− f(yk)

λ
= f ′(yk; dk) ≤ −ρ∥xk − yk∥2 < −ρ

2
∥dk∥2.

Thus there is some δ̄k > 0 such that

f(yk + λdk)− f(yk)

λ
< −ρ

2
∥dk∥2, ∀λ ∈

(
0, δ̄k

]
,

i.e.,

f(yk + λdk) < f(yk)− ρλ

2
∥dk∥2, ∀λ ∈

(
0, δ̄k

]
.

Pick λ ∈
(
0, δ̄k

]
. Hence

f(yk)− ρλ

2
∥dk∥2 ≤ f(yk)− αλ2∥dk∥2,

which is equivalent to

λ ≤ ρ

2α
.

Therefore, setting δk := min
{
δ̄k,

ρ

2α

}
, we obtain

f(yk + λdk) < f(yk)− αλ2∥dk∥, ∀λ ∈ (0, δk] .
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Remark 3.1.2. Since β ∈ (0, 1), then lim
j→∞

βjλ̄k = 0 and, therefore, by Proposition

3.1.1(iii), the line search in Step 3 is well-defined. Combining this fact with Remark 3.1.1

we conclude that Algorithm 2 is well-defined.

The following example illustrates a case where the DC function f has a non-differentiable

first component. We will show that, in this case, the direction computed by BDCA is

ascending from the found solution.

Example 3.1.1. ([4, Example 3.4]) Let ϕ : R2 → R be a DC function with DC components

g(x) = −5

2
x1 + x2

1 + x2
2 + |x1|+ |x2| and h(x) =

1

2
(x2

1 + x2
2).

The minimum point of ϕ is x∗ = (1.5, 0)⊤ and the optimum value is ϕ∗ = −1.125.

Clearly, the second component h is differentiable, but g is not. Following the definition

of Algorithm 2, in Step 1 we choose x0 = (1
2
, 1). In Step 2, we compute w0 ∈ ∂h

(
1
2
, 1
)
.

Since h is differentiable,we apply Proposition 1.2.1 and obtain w0 = ∇h
(
1
2
, 1
)
=
(
1
2
, 1
)
.

Continuing, we solve the subproblem (3.1), whose solution is y0 = (1, 0) and thus d0 =(
1
2
,−1

)
. Now, we assert that d0 is not a descent direction from y0. In fact, we can verify

that

f ′(y0, ; d0) = lim
λ↓0

f(y0 + td0)− f(y0)

λ
=

3

4
,

descent direction of f from y0. In addiction,

f(y0 + λd)− f(y0) =

(
−1 +

3

4
λ+

5

8
λ2

)
− 1 =

3

4
λ+

5

8
λ2 > 0, ∀λ > 0,

which shows that d0 is, in fact, an ascending direction of f from y0.

Lemma 3.1.1. If yk = xk for some k ∈ N, then xk is a critical point of f .

Proof. Indeed, the expression at (3.1) is equivalent to

∇g(yk) = wk.

On the other hand, wk ∈ ∂h(xk), due to Step 2. Consequently, if yk = xk, it follows that

∂g(xk) ∩ ∂h(xk) =
{
∇g(xk)

}
. Thus, xk is a critical point of f.
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3.2 Convergence analysis

Proposition 3.2.1. The sequence
{
xk
}
k∈N generated by Algorithm 2 satisfies one of

the following statements:

(i) The Algorithm 2 terminates at a critical point;

(ii) The sequence
{
f(xk)

}
k∈N is decreasing, i.e., f(xk+1) ≤ f(xk), for all k ∈ N.

Proof. Conforming to Step 3, the Algorithm 2 terminates when yk = xk. By Lemma

3.1.1, xk is a critical point, and this proves item (i). By combining the items (i) and (iii)

of the Proposition 3.1.1 with Step 4, we obtain

f(yk + λkd
k) ≤ f(yk)− αλ2

k∥dk∥

≤ f(xk)− ρ∥dk∥2 − αλ2
k∥dk∥

= f(xk)− (ρ+ αλ2
k)∥dk∥2, ∀k ∈ N,

(3.4)

where ρ > 0 is the constant of strong convexity for the functions g and h. Thus, since

dk ̸= 0 and xk+1 = yk + λkd
k, we have

f(xk+1) = f(yk + λkd
k) < f(xk), ∀k ∈ N,

which completes the proof.

Remark 3.2.1. When dk ̸= 0, the inequalities at (3.4) shows that The BDCA method

provides a decrease in the objective function f , at each iteration, larger than the DCA.

Due to this, it is expected that the BDCA converges faster than the DCA.

Corollary 3.2.1. If
{
xk
}
k∈N is a sequence generated by Algorithm 2, then the sequence{

f(xk)
}
k∈N is convergent.

Proof. This follows immediately from the fact that f is lower-bounded, by assumption

(H3), and
{
f(xk)

}
k∈N is decreasing.

Proposition 3.2.2. If
{
xk
}
k∈N is a sequence generated by Algorithm 2, then the fol-

lowing statements holds:

(i)
+∞∑
k=0

∥dk∥2 < +∞. In particular, ∥yk − xk∥ → 0 as k → +∞.
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(ii) If {λk}k∈N is bounded, then
+∞∑
k=0

∥xk+1 − xk∥2 < +∞. In particular, ∥xk+1−xk∥ → 0

as k → +∞.

Proof.

(i) By Proposition 3.1.1 and Step 4 of Algorithm 2, we have

f(xk+1) ≤ f(xk)−
(
αλ2

k + ρ
)
∥dk∥2, ∀k ∈ N.

Thus, (
αλ2

k + ρ
)
∥dk∥2 ≤ f(xk)− f(xk+1), ∀k ∈ N.

Since αλ2
k ≥ 0, it holds that ρ∥dk∥2 ≤ (αλ2

k + ρ) ∥dk∥2. Hence,

ρ||dk||2 ≤ f(xk)− f(xk+1), ∀k ∈ N. (3.5)

Considering the partial sum at inequality (3.5):

0 ≤
N∑
k=0

ρ||dk||2 ≤
N∑
k=0

[f(xk)− f(xk+1)]

we obtain

0 ≤
N∑
k=0

ρ||dk||2 ≤ f(x0)− f(xN+1)

Since f ∗ = inf
x∈Rn

f(x), by (H2), then f ∗ ≤ f(xN+1) implies −f ∗ ≥ −f(xN+1), for all

N ∈ N. Therefore,

0 ≤
N∑
k=0

ρ||dk||2 ≤ f(x0)− f ∗,∀k ∈ N. (3.6)

Since ρ > 0 is constant, taking the limit as N → +∞ at (3.6) we have

+∞∑
k=0

||dk||2 < +∞.

(ii) Let λ̄ > 0 be such that 0 ≤ λk ≤ λ̄, for all k ∈ N. Firstly, note that

∥xk+1 − xk∥2 = ||yk + λkd
k − xk||2

= ∥yk + λk

(
yk − xk

)
− xk∥2

= ∥ (1 + λk) y
k − (1 + λk)x

k∥2

= (1 + λk)
2 ∥yk − xk∥2

= (1 + λk)
2 ∥dk∥2

≤
(
1 + λ̄

)2 ∥dk∥2, ∀k ∈ N.
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Because of this, and by using item (i), it holds that

0 ≤
+∞∑
k=0

∥xk+1 − xk∥2 ≤
+∞∑
k=0

(
1 + λ̄

)2 ∥dk∥2 < +∞.

In particular, ||xk − xk+1|| → 0 as k → +∞.

Theorem 3.2.1. Every cluster point of
{
xk
}
k∈N generated by Algorithm 2, if any, is a

critical point of f .

Proof. Since x∗ is a critical point of
{
xk
}
k∈N, there is a subsequence

{
xkj
}
j∈N such that

lim
j→+∞

xkj = x∗, i.e., lim
j→+∞

||xkj − x∗|| = 0. By the last proposition, if
{
yk
}
k∈N is the

sequence generated by Step 2 of Algorithm 2, then lim
k→+∞

||yk − xk|| = 0. Hence,

∥ykj − x∗∥ = ∥ykj − xkj + xkj − x∗∥

≤ ∥ykj − xkj∥+ ∥xkj − x∗∥, ∀j ∈ N,

which implies that lim
j→+∞

∥ykj − x∗∥ = 0, i.e., lim
j→+∞

ykj = x∗. Step 2 give us ∇g(ykj) ∈

∂h(xkj), for all j ∈ N. By Proposition 1.2.2 with Corollary 1.2.1, it follows that

∇g(x∗) ∈ ∂h(x∗).

Thus, x∗ is a critical point of f .

3.3 Numerical illustration

The numerical illustrations in this section were conducted using MATLAB software.

The initial points were randomly chosen within the box [−10, 10] × [−10, 10]. To solve

the subproblems, we used the fminsearch toolbox with the inner stop rule:

optimset(’TolX’,1e-7,’TolFun’,1e-7). The stopping criterion for the algorithm was

||xk+1 − xk|| < 10−5. In the example below, the constants in the definition of Algorithm

2 were set as α = 0.6, β = 0.1 and λ̄ = 1.

Example 3.3.1. (Example 2.3.2 revisited) Let f : R2 → R given by f(x, y) = x2+y2+x+

y−|x|−|y|. We can obtain a DC decomposition of f as follows: f(x, y) = g(x, y)−h(x, y),

where g(x, y) = 3
2
(x2 + y2) + x + y and h(x, y) = 1

2
(x2 + y2) + |x| + |y|. The minimum

point of f is xopt = (−1,−1) and the optimum value is fopt = −2.
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To illustrate Algorithm 2, we consider Example 3.3.1 and take the initial point

x0 = (3.4975, 2.7560) randomly chosen within the box [−5, 5] × [−5, 5]. In this case, the

algorithm finds the critical point x∗ = (−1.0000,−1.0000), which is exactly the global

minimum of f . The convergence of the method is illustrated in Figure 3.1. Note in

Figure 3.1(b) that toel = 1e− 5 is being satisfied.
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Figure 3.1: Algorithm 2 for Example 3.3.1.

To illustrate a comparison between Algorithm 1 and Algorithm 2, we selected

100 random points within the box [−10, 10] × [−10, 10] and compiled the data in Table

3.3, where the column mink represents the minimum number of iterations taken to find a

critical point,maxk denotes the maximum number of iterations required to find the critical

point, medk indicates the average number of iterations computed for the algorithm to find

a critical point. The columns mint, maxt, and medt denote, respectively, the minimum,

maximum, and average time for the algorithm to halt at a critical point. The last column

minglobal presents the percentage of times the algorithm found the optimal solution. The

data collected for the columnminglobal were obtained separately so that storing the images

would not affect the time.

Table 3.1: Comparing Algorithm 1 and Algorithm 2 100 times with random initial

points in [−10, 10]× [−10, 10].

Function mink maxk medk mint (s) maxt (s) medt (s) minglobal

Algorithm 1 (DCA) 11 14 13 0.010056 0.033005 0.015545 28%

Algorithm 2 (BDCA) 9 16 12 0.0097658 0.1503 0.014328 100%
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Chapter 4

Non-monotone Boosted Difference of

Convex Algorithm

In Chapter 3, we approached the BDCA, which strongly considers the differentiability

of the first DC component in problem (3) to guarantee that the direction defined in the al-

gorithm is descent. As observed, this process enhances the DCA by further decreasing the

function f along the sequence generated by the BDCA, thus preserving the monotonicity

of the search.

The method proposed by Ferreira, Santos, and Souza [21] employs a non-monotone

line search in BDCA to enable a possible growth in the objective function values controlled

by a parameter. Before to introduce the method, we recall the DC problem presented at

(1):

min
x∈Rn

f(x) = g(x)− h(x),

where g, h : Rn → R are convex functions.

Throughout this chapter, we will use the same assumptions as in the previous chapter,

except for the differentiability of the function g. In other words, we will assume:

(H1) g, h : Rn → R are both strongly convex with modulus ρ > 0;

(H2) f ∗ := inf
x∈Rn

{f(x) = g(x)− h(x)} > −∞.

The assumptions (H1) and (H2) are the same as those adopted in Chapter 2, where they

were analyzed and discussed.
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4.1 Exact computation of the subproblems

The main idea of the Non-monotone Boosted Difference of Convex Algorithm (nmB-

DCA) is to allow potential growth in the objective function values controlled by a param-

eter, enabling the removal of the differentiability assumption in the first DC component

considered in [3] and [4].

Next, we present the structure of the nmBDCA followed by the results that can be

found in [21]. In this section, proofs will be omitted as they are recovered by the inexact

method when choosing parameters appropriately.

Algorithm 3 Non-monotone Boosted Difference of Convex Algorithm (nmBDCA)[21].

1: Fix α > 0 and β ∈ (0, 1). Choose any initial point x0 ∈ Rn and set k := 0.

2: Choose wk ∈ ∂h(xk) and compute yk the solution of the following convex subproblem

min
x∈Rn

g(x)− ⟨wk, x− xk⟩. (4.1)

3: Set dk := yk − xk. If dk = 0 then STOP and return xk. Otherwise, choose

vk ≥ 0 (to be specified later), any λ̄k ≥ 0, and set λk := λ̄k. While f(yk + λkd
k) >

f(yk)− αλk
2∥dk∥2 + vk DO λk := βλk.

4: Set xk+1 := yk + λkd
k; set k := k + 1 and go to the Step 2.

Note that we have a term vk added to the line search described in Step 3. Some

examples of sequences {vk}k∈N will be mentioned in the inexact method section (see

section 4.1.3).

Proposition 4.1.1. For each k ∈ N, the following statements hold:

(i) If dk = 0, then xk is a critical point of f .

(ii) There holds f(yk) ≤ f(xk)− ρ||dk||2.

Proof. See [3, Proposition 3].

To ensure the well-definition of Algorithm 3, we consider two cases: first, g is possibly

non-differentiable; second, g is continuously differentiable.
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4.1.1 Well-definedness of nmBDCA: g possibly non-differentiable

In this section, we consider the function g is possibly non-differentiable. However, we

also need to assume that vk > 0. The next proposition guarantees that Algorithm 3 is

well-defined.

Proposition 4.1.2. Let
{
xk
}
k∈N be the sequence generated by Algorithm 3. Assume

that dk ̸= 0 and vk > 0 for each k ∈ N. Then, the following statements hold:

(i) There holds δ̄k := vk/(g(y
k + dk) + g(xk)− 2g(yk)) > 0, and

f(yk + λdk) ≤ f(yk)− αλ2∥dk∥2 + vk, ∀λ ∈ (0, δk] ,

where δk := min
{
δ̄k, 1,

3ρ
2α

}
. Consequently, the line search in Step 3 is well-defined.

(ii) f(xk+1) ≤ f(xk)− (ρ+ αλ2
k)||dk||2 + vk, for all k ∈ N.

Proof. See [21, Proposition 13].

Remark 4.1.1. Since xk+1 := yk + λkd
k, then xk+1 = xk implies that xk = yk + λkd

k,

and hence (1 + λk)d
k = 0. As λk > 0, we obtain that dk = 0. By Proposition 4.1.1, xk is

a critical point of f . Thus, we assume the sequence
{
xk
}
k∈N generated by Algorithm 3

is infinite.

As mentioned by Ferreira, Santos, and Sousa [21], when g is convex and nondifferen-

tiable, the direction dk ̸= 0 generated by Step 3 in Algorithm 3 may not be a descent

direction of f from yk; this can be verified in Example 4.3.2. Because of this, we need to

assume that vk > 0; otherwise, we could not compute λk > 0 satisfying the line search in

Step 3.

Next, we will see that considering g convex and differentiable, we can assume vk ≥ 0

to compute λk > 0 satisfying the line search in Algorithm 3.

4.1.2 Well-definedness of nmBDCA: g differentiable

Considering the function g to be continuously differentiable, we can assume that vk ≥

0. Thus, in addition to hypotheses (H1) and (H2), we adopt the following assumption:

(H3) g is differentiable.

Throughout this work, (H3) will be used only when explicitly mentioned.
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Proposition 4.1.3. Suppose that g : Rn → R satisfies (H3). For each k ∈ N, assume

that dk ̸= 0 and vk ≥ 0. Then, the following statements hold:

(i) f ′(yk; dk) ≤ ρ||dk||2 < 0 and there exists a constant δk such that f(yk + λdk) ≤

f(yk)− ρλ2||dk||2 + vk, for all λ ∈ (0, δk]. Consequently, the line search in Step 4 is

well-defined.

(ii) f(xk+1) ≤ f(xk)− (ρ+ αλ2
k) ||dk||2 + vk.

Proof. See [21, Proposition 14].

Note that when vk = 0, the non-monotone line search of Algorithm 3 retrieves the

monotone line search of Algorithm 2. Thus, as pointed out by Ferreira, Santos, and

Sousa [21], the nmBDCA is a natural extension of the BDCA established in [4] and [3].

Moreover, if vk > 0, then the nmBDCA can be seen as a relaxed version of the BDCA.

4.1.3 Strategies to choose vk

In this section, we will introduce some of the sequence selection strategies {vk}k∈N
suggested by Ferreira, Santos, and Souza [21].

(E1) Given ∆min ∈ [0, 1), the sequence {vk}k∈N is defined as follows: v0 ≥ 0 and vk+1, for

each ∆k+1 ∈ [∆min, 1], satisfies the following condition:

0 ≤ vk+1 ≤ (1−∆k+1)
(
f(xk)− f(xk+1) + vk

)
, ∀k ∈ N;

(E2) {vk}k∈N is such that
∑+∞

k=0 vk < +∞;

(E3) {vk}k∈N satisfies: for every, δ > 0, there exists k0 ∈ N such that vk ≤ δ||dk||2, for all

k ≥ k0.

Remark 4.1.2. In Lemma 4.2.1, as particular case, we will prove that if ∆min > 0, then

(E1) implies (E2).

As we will see in Section 4.2.1, strategies (E1), (E2), and (E3) will be employed in

the proposal of an inexact method that is a relaxed version of Algorithm 2. With a

subtle modification, we revive the described strategies, and for this reason, the comments

and examples will be maintained in Section 4.2.1.
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4.1.4 Convergence analysis: g possibly non-differentiable

In this section, convergence results will be presented. Here, results from Section 4.1.1

will be used; hence, we also need to assume that vk > 0, for all k ∈ N.

The results to be presented were established by Ferreira, Santos, and Souza [21]. In

Section 4.2.2, we will see that, under reasonable assumptions, the following theorems are

particular cases of their inexact version, proposed in Section 4.2. Therefore, their proofs

will be omitted.

Theorem 4.1.1. If limk→∞ ∥dk∥ = 0, then every cluster point of
{
xk
}
k∈N, if any, is a

critical point of f .

Proof. See [21, Theorem 15].

Theorem 4.1.2. If the sequence {vk}k∈N ⊂ R++ is chosen either according to strategy

(E2), or to strategy (E3), then every cluster point of
{
xk
}
k∈N, if any, is a critical point

of f .

Proof. See [21, Theorem 16].

Theorem 4.1.3. If the sequence {vk}k∈N ⊂ R++ is chosen according to strategy (E1),

then the following statements hold:

(i) The sequence
{
f(xk) + vk

}
k∈N is non-increasing and convergent;

(ii) If lim
k→∞

vk = 0, then every cluster point of
{
xk
}
k∈N, if any, is a critical point of f ;

(iii) If ∆min > 0, then every cluster point of
{
xk
}
k∈N, if any, is a critical point of f .

Proof. See [21, Theorem 17].

4.1.5 Iteration-complexity analysis

The following theorems established by Ferreira, Santos, and Souza [21] present some

complexity limitations for
{
xk
}
k∈N generated by Algorithm 2. The following results

address the cases where the sequence {vk}k∈N was chosen according to the strategies

(E2) and (E3).

36



Theorem 4.1.4. Suppose that the sequence (vk)k∈N ⊂ R++ is chosen according to strategy

(E2). For each N ∈ N, we have

min
{
∥dk∥ : k = 0, 1, · · · , N − 1

}
≤

√
f(x0)− f ∗ +

∑+∞
k=0 vk

√
ρ

1√
N
.

Consequently, for a given accuracy ε > 0, if N ≥ (f(x0)− f ∗ +
∑∞

k=0 vk) /(ρϵ
2), then the

following inequality holds min{∥dk∥ : k = 0, 1, · · · , N − 1} ≤ ε.

Proof. See [21, Theorem 18].

Theorem 4.1.5. Suppose that the sequence (vk)k∈N ⊂ R++ is chosen according to strategy

(S3). Let 0 < ξ < 1 and k0 ∈ N such that vk ≤ ξρ∥dk∥2, for all k ≥ k0. Then, for each

N ∈ N such that N > k0, one has

min{∥dk∥ : k = 0, 1, · · · , N − 1} ≤

√
f(x0)− f ∗ +

∑k0−1
k=0 vk√

(1− ξ)ρ

1√
N
.

Consequently, for a given ε > 0 and k0 ∈ N such that vk ≤ ξρ∥dk∥2 for all k ≥ k0, if N ≥

max{k0, (f(x0)− f ∗ +
∑k0−1

k=0 vk)/(ρ(1−ξ)ε2)}, then min
{
∥dk∥ : k = 0, 1, · · · , N − 1

}
≤

ε.

Proof. See [21, Theorem 19].

4.2 Inexact computation of the subproblems

We propose an inexact approach (InmBDCA) for the Non-monotone Boosted Differ-

ence of Convex Algorithm (nmBDCA), enabling a relaxed version that, under suitable

assumptions, naturally recovers the exact version.

Consider the exact model described in Algorithm 3. From a computational stand-

point, it can be difficult to compute an element in the subdifferential of the function h

or to solve the subproblem (4.1). Often, the subproblems are solved approximately by

adjusting parameters that make the inexact solution appropriate for each situation.

Proposition 4.2.1. Let f : Rn → R be a DC function, given by f(x) = g(x) − h(x),

where g, h : Rn → R are strongly convex with modulus ρ > 0 and g is differentiable.

Let x ∈ Rn and w ∈ ∂h(x) be given. Then, for every y ∈ Rn such that y ̸= x and

||∇g(y)− w|| < ρ||y − x||, we have that f ′(y; y − x) < 0.
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Proof. Given y ∈ Rn, we have

f ′(y; y − x) = g′(y; y − x)− h′(y; y − x). (4.2)

In particular, since g is differentiable, g′(y; y−x) = ⟨∇g(y), y−x⟩ and, by Theorem 1.2.1,

h′(y; y − x) = maxs∈∂h(y) ⟨s, y − x⟩. Thus, (4.2) becomes

f ′(y; y − x) ≤ ⟨∇g(y), y − x⟩ − ⟨v, y − x⟩

= ⟨∇g(y)− v, y − x⟩, v ∈ ∂h(y). (4.3)

On the other hand,

⟨∇g(y)− v, y − x⟩ = ⟨∇g(y)− w + w − v, y − x⟩

= ⟨∇g(y)− w, y − x⟩+ ⟨w − v, y − x⟩. (4.4)

Since w ∈ ∂h(x) and ∂h is strongly monotone with modulus ρ > 0 (Theorem 1.2.3), we

obtain

⟨w − v, y − x⟩ ≤ −ρ||y − x||2. (4.5)

Moreover, by Cauchy-Schwarz inequality,

⟨∇g(y)− w, y − x⟩ ≤ ||∇g(y)− w|| · ||y − x||. (4.6)

Substituting (4.6) and (4.5) into (4.4), we obtain

⟨∇g(y)− v, y − x⟩ ≤ ||∇g(y)− w|| · ||y − x|| − ρ||y − x||2. (4.7)

By combining (4.7) with (4.3) and using the fact that ||∇g(y)−w|| < ρ||y− x||, we have

f ′(y; y − x) ≤ ||∇g(y)− w|| · ||y − x|| − ρ||y − x||2

< ρ||y − x|| · ||y − x|| − ρ||y − x||2

= 0.

Remark 4.2.1. Note that if yk is the exact solution of subproblem (3.1) in Step 2 of

BDCA and dk = yk − xk ̸= 0, then ∇g(yk) = wk ∈ ∂h(xk), and hence,

0 = ||∇g(yk)−∇g(yk)|| = ||∇g(yk)− wk|| < ρ||yk − xk||.

In other words, for every k ∈ N, the exact solution yk of of subproblem (3.1) in Step 2 of

BDCA satisfies ||∇g(yk)− wk|| < ρ||yk − xk||.
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Therefore, a natural question arises: besides the exact solution of subproblem (3.1),

are there other points y ∈ Rn such that d = y − xk is a descent direction of f at y? The

following corollary provides an answer to this question.

Corollary 4.2.1. Let f : Rn → R be a DC function, given by f(x) = g(x)− h(x), where

g, h : Rn → R are strongly convex with modulus ρ > 0 and g is differentiable. Let x ∈ Rn

and w ∈ ∂h(x) be given. If ŷ ∈ Rn is such that ŷ ̸= x and ||∇g(ŷ)−w|| < ρ||ŷ− x||, then

there exists r > 0 such that, for all y ∈ B(ŷ; r),

||∇g(y)− w|| < ρ||y − x||. (4.8)

Proof. Take any ŷ ∈ Rn satisfying (4.8). Let us suppose that, for each l ∈ N, there exists

yl ∈ Rn such that ∥ŷ − yl∥ < 1
l
and (4.8) does not hold, i.e.,

ρ||yl − x|| ≤ ||∇g(yl)− w||. (4.9)

Taking the limit as l → +∞ on (4.9), by Proposition 1.2.1, ∇g is continuous, and hence,

ρ||ŷ − x|| ≤ ||∇g(ŷ)− w||,

which is a contradiction.

To ensure mathematical efficiency of the nmBDCA even when handling the problem in

an approximate manner, motivated by Proposition 4.2.1 and Corollary 4.2.1, we propose

an Inexact Non-monotone Boosted Difference of Convex Algorithm (InmBDCA) defined

in Algorithm 4. In particular, our proposal is also an inexact method for BDCA. To

the best our knowledge, inexact versions of BDCA or nmBDCA have not been considerd

in the literature. On the other hand, many works have considered addressing various

problems in an inexact context, see, for instance, [14, 20, 33, 37, 42, 43, 44, 50].

Remark 4.2.2. Setting θ = 0 and εk = 0 for all k ∈ N, we have wk ∈ ∂h(xk), and

(4.11) implies wk = ξk. Thus, the subproblem in Step 2 becomes to compute yk such that

wk ∈ ∂g(yk), i.e.,

yk = argmin
x∈Rn

g(x)− ⟨wk, x− xk⟩,

which corresponds to (4.1). As a result, Algorithm 4 is an inexact version of Algorithm

3.
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Algorithm 4 Inexact Non-monotone Boosted Difference of Convex Algorithm

1: Fix α > 0, θ ∈
[
0, ρ

2

)
, β ∈ (0, 1), and a sequence {εk}k∈N ⊂ R+. Choose any initial

point x0 ∈ Rn and set k := 0.

2: Choose wk ∈ ∂εkh(x
k) and compute

(
yk, ξk

)
a solution of the following subproblem

ξk ∈ ∂g(yk), (4.10)

||wk − ξk|| ≤ θ||yk − xk||. (4.11)

3: Set dk := yk − xk. If dk = 0 then STOP and return xk. Otherwise, choose

vk ≥ 0 (to be specified later), any λ̄k ≥ 0, and set λk := λ̄k. While f(yk + λkd
k) >

f(yk)− αλk
2∥dk∥2 + vk DO λk := βλk.

4: Set xk+1 := yk + λkd
k; set k := k + 1 and go to the Step 2.

Remark 4.2.3. Note that, in the exact case, the convex minimization subproblem in Step

2 consists of finding

yk = argmin
x∈Rn

g(x)− ⟨wk, x− xk⟩, (4.12)

which is generally solved approximately. Thus, one way to verify (4.10) and (4.11) is to

check if the solution yk obtained from the machine in (4.12) satisfies these conditions.

For example, when the DC component g : Rn → R is differentiable, then ξk = ∇g(yk),

and in this case, (4.11) can be easily verified, provided that we know the expression for

the gradient of g. If g is not differentiable, the verification may become more difficult, as

we would need to know the subdifferential of g to take ξk ∈ ∂g(yk) and then verify (4.11).

In this way, in both cases, the value of θ could be adjusted so that (4.11) is satisfied.

Remark 4.2.4. By using the Cauchy-Schwarz Inequality, we have that ⟨ξk−wk, yk−xk⟩ ≤

||ξk − wk|| · ||yk − xk||, which, when combined with equation (4.11), yields

⟨ξk − wk, yk − xk⟩ ≤ θ||yk − xk||2 ≤ ρ

2
||yk − xk||2,

then

⟨ξk, xk − yk⟩+ ρ

2
||yk − xk||2 ≥ −⟨wk, yk − xk⟩. (4.13)

On the other hand, since ξk ∈ ∂g(yk) and g is strongly convex with modulus ρ > 0, it

follows that

g(xk) ≥ g(yk) + ⟨ξk, xk − yk⟩+ ρ

2
||xk − yk||2,
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which combing with (4.13), becomes

g(xk) ≥ g(yk)− ⟨wk, yk − xk⟩. (4.14)

Proposition 4.2.2. For each k ∈ N the following statements hold:

(i) If dk = 0, then xk is a εk-critical point of f ;

(ii) There holds f(yk) ≤ f(xk)−
(ρ
2
− θ
)
||dk||2 + εk.

Proof. Proof of item (i): fix any k ∈ N and take wk ∈ ∂εkh(x
k). Since dk = yk − xk and

||wk − ξk|| ≤ θ||yk − xk||, by (4.11), if dk = 0, then yk = xk and wk = ξk ∈ ∂g(yk) =

∂g(xk) ⊂ ∂εkg(x
k). Therefore, ∂εkg(x

k) ∩ ∂εkh(x
k) ̸= ∅, which proves this item.

Proof of item (ii): Since wk ∈ ∂εkh(x
k), by Definition 1.2.2, it follows that

h(yk) ≥ h(xk) + ⟨wk, yk − xk⟩ − εk (4.15)

The function g is strongly convex with modulus ρ > 0. Then, by (4.10) and Theorem

1.2.3, it holds

g(xk) ≥ g(yk) + ⟨ξk, xk − yk⟩+ ρ

2
∥xk − yk∥2 (4.16)

By adding both the inequalities (4.15) and (4.16) term by term, we obtain

h(yk) + g(xk) ≥ h(xk) + g(yk) + ⟨wk, yk − xk⟩+ ⟨−ξk, yk − xk⟩+ ρ

2
||xk − yk||2 − εk

= h(xk) + g(yk) + ⟨wk − ξk, yk − xk⟩+ ρ

2
||yk − xk||2 − εk,

which implies that

−h(yk)− g(xk) ≤ −h(xk)− g(yk) + ⟨ξk − wk, yk − xk⟩ − ρ

2
||yk − xk||2 + εk

and hence,

g(yk)− h(yk) ≤ g(xk)− h(xk) + ⟨ξk − wk, yk − xk⟩ − ρ

2
||yk − xk||2 + εk. (4.17)

The Cauchy-Schwarz inequality yields

⟨ξk − wk, yk − xk⟩ ≤ ||ξk − wk|| · ||yk − xk||.

Since ||wk − ξk|| ≤ θ||yk − xk||, it follows that

⟨ξk − wk, yk − xk⟩ ≤ θ||yk − xk||2. (4.18)
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By combining (4.17) with (4.18) and by using that f(x) = g(x)−h(x), for all x ∈ Rn, we

obtain

f(yk) ≤ f(xk) + θ||yk − xk||2 − ρ

2
||yk − xk||2 + εk

= f(xk)−
(ρ
2
− θ
)
||yk − xk||2 + εk.

We recall that dk = yk − xk. Therefore, it holds that f(yk) ≤ f(xk) −
(ρ
2
− θ
)
||dk||2 +

εk.

Note that when εk = 0 for each k ∈ N, then Proposition 4.2.2 recovers Proposition

4.1.1.

Proposition 4.2.3. Let
{
xk
}
k∈N be the sequence generated by Algorithm 4. Assume

that dk ̸= 0 and vk > 0 for each k ∈ N. Then,

τ̂k := vk/
(
g(yk + dk) + g(xk)− 2g(yk) + εk

)
> 0,

and

f(yk + λdk) ≤ f(yk)− αλ2∥dk∥2 + vk, ∀λ ∈ (0, τk] ,

where τk := min
{
1, τ̂k,

ρ
α

}
. Consequently, the line search in Step 3 is well-defined.

Proof. Before starting the proof, we recall that dk = yk − xk. Fix s ∈ ∂h(yk). Since h is

strongly convex with modulus ρ > 0, then by Theorem 1.2.3, we have

h(yk + λdk) ≥ h(yk) + λ⟨s, dk⟩+ ρ

2
λ2||dk||2, ∀λ ∈ R. (4.19)

In particular, for λ = −1, we obtain

h(xk) = h(yk − yk + xk) ≥ h(yk) + ⟨−s, dk⟩+ ρ

2
||dk||2. (4.20)

Moreover, since wk ∈ ∂εkh(x
k), it follows that

h(yk) ≥ h(xk) + ⟨wk, yk − xk⟩ − εk. (4.21)

By adding both the inequalities (4.20) and (4.21) term by term, it holds

h(xk) + h(yk) ≥ h(yk) + h(xk) + ⟨−s, dk⟩+ ρ

2
||dk||2 + ⟨wk, yk − xk⟩ − εk,

which implies that ⟨s, dk⟩ ≥ ⟨wk, yk − xk⟩+ ρ

2
||dk||2 − εk. Then,

λ⟨s, dk⟩ ≥ λ⟨wk, yk − xk⟩+ ρ

2
λ||dk||2 − λεk, ∀λ ≥ 0. (4.22)
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Combing the expressions at (4.19) and (4.22), we obtain

h(yk + λdk) ≥ h(yk) + λ⟨wk, yk − xk⟩+ ρ

2
λ||dk||2 − λεk +

ρ

2
λ2||dk||2, ∀λ ≥ 0. (4.23)

Given that yk satifies (4.14), i.e., ⟨wk, yk − xk⟩ ≥ g(yk)− g(xk), then (4.23) becomes

h(yk + λdk) ≥ h(yk) + λ
(
g(yk)− g(xk)

)
+

ρ

2
λ(1 + λ)||dk||2 − λεk

= h(yk) + λ
(
g(yk)− g(xk)− εk

)
+

ρ

2
λ(1 + λ)||dk||2, ∀λ ≥ 0,

which gives

−
(
h(yk + λdk)− h(yk)

)
≤ λ

(
g(xk)− g(yk) + εk

)
− ρ

2
λ(1 + λ)||dk||2, (4.24)

for all λ ≥ 0.

On the other hand, since g is strongly convex with modulus ρ > 0, using Definition

1.1.3, we have

g(yk + λdk)− g(yk) = g
(
λ(yk + dk) + (1− λ)yk

)
− g(yk)

≤ λg(yk + dk) + (1− λ)g(yk)− ρ

2
λ(1− λ)||dk||2 − g(yk)

= λ
(
g(yk + dk)− g(yk)

)
− ρ

2
λ(1− λ)||dk||2, (4.25)

for all λ ∈ [0, 1]. Note that

f(yk + λdk)− f(yk) =
(
g(yk + λdk)− h(yk + λk)

)
−
(
g(yk)− h(yk)

)
=
(
g(yk + λdk)− g(yk)

)
−
(
h(yk + λdk)− h(yk)

)
.

Using this fact with (4.24) and (4.25), we obtain

f(yk + λdk)− f(yk) ≤ λ
(
g(yk + dk) + g(xk)− 2g(yk) + εk

)
− ρ

2
λ(1 + λ)||dk||2

− ρ

2
λ(1− λ)||dk||2

= λ
(
g(yk + dk) + g(xk)− 2g(yk) + εk

)
− ρλ∥dk∥2, (4.26)

for all λ ∈ [0, 1].

Moreover, it follows from Theorem 1.2.3 that

g(yk + dk) ≥ g(yk) + ⟨u, dk⟩+ ρ

2
||dk||2, and g(xk) ≥ g(yk) + ⟨u,−dk⟩+ ρ

2
||dk||2,
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for all u ∈ ∂g(yk), where dk = yk −xk. Adding either the inequalities above, it holds that

g(yk+dk)+g(xk)−2g(yk) ≥ ρ||dk||2 > 0, because dk ̸= 0. Hence, since vk > 0 and εk ≥ 0,

we have that τ̂k := vk/
(
g(yk + dk) + g(xk)− 2g(yk) + εk

)
> 0, as stated. Furthermore,

0 < λ
(
g(yk + dk) + g(xk)− 2g(yk) + εk

)
≤ vk, ∀λ ∈ (0, τ̂k] . (4.27)

Also note that, considering λ > 0, we have −ρλ||dk||2 ≤ −αλ2||dk||2 if, only if, λ ≤
ρ

α
. Thus, by combining this fact with (4.27) in (4.26), it follows that setting τk :=

min
{
1, τ̂k,

ρ
α

}
, we have

f(yk + λdk) ≤ f(yk)− αλ2||dk||2 + vk, ∀λ ∈ (0, τk] .

Finally, given λ̄ ≥ 0, due to β ∈ (0, 1), it follows that lim
j→+∞

βjλ̄k = 0. Hence, there is

a sufficient large j ∈ N such that λk := βjλ̄k satisfies

f(yk + λkd
k) ≤ f(yk)− αλ2

k||dk||2 + vk,

which proves that the line search in Step 3 is well-defined. Moreover, setting xk+1 :=

yk + λkd
k, we obtain the well-definition of Step 4.

Proposition 4.2.4. Let
{
xk
}
k∈N be the sequence generated by Algorithm 4. Assume

that dk ̸= 0 and vk > 0 for each k ∈ N. Then,

f(xk+1) ≤ f(xk)−
(ρ
2
− θ + αλ2

k

)
||dk||2 + vk + εk,

for each k ∈ N. In particular,(ρ
2
− θ
)
||dk||2 ≤ f(xk)− f(xk+1) + vk + εk, (4.28)

for all k ∈ N.

Proof. For each k ∈ N, Proposition 4.2.2 (ii) guarantees that f(yk) ≤ f(xk)−
(ρ
2
− θ
)
||dk||2+

εk. Moreover, by the previous proposition, there is λk > 0 such that f(yk + λkd
k) ≤

f(yk)− αλ2
k∥dk∥2 + vk. Therefore, setting xk+1 := yk + λkd

k, we obtain

f(xk+1) ≤ f(yk)− αλ2
k∥dk∥2 + vk

≤ f(xk)−
(ρ
2
− θ
)
||dk||2 − αλ2

k∥dk∥2 + vk + εk

= f(xk)−
(ρ
2
− θ + αλ2

k

)
||dk||2 + vk + εk,
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for all k ∈ N, which implies that(ρ
2
− θ + αλ2

k

)
||dk||2 ≤ f(xk)− f(xk+1) + vk + εk, ∀k ∈ N.

Since αλ2
k ≥ 0 for all k ∈ N, we have that

(ρ
2
− θ
)
||dk||2 ≤

(ρ
2
− θ + αλ2

k

)
for all k ∈ N

and hence (ρ
2
− θ
)
||dk||2 ≤ f(xk)− f(xk+1) + vk + εk, ∀k ∈ N.

4.2.1 Strategies to choose vk

In this section, some strategies to choose the terms of the sequence {vk}k∈N will be

introduced. The following strategies were taken from [21] with one adaptation in (S1).

(S1) Given ∆min ∈ [0, 1), the sequence {vk}k∈N is defined as follows: v0 ≥ 0 and vk+1, for

each ∆k+1 ∈ [∆min, 1], satisfies the following condition:

0 ≤ vk+1 ≤ (1−∆k+1)
(
f(xk)− f(xk+1) + vk + εk

)
, ∀k ∈ N; (4.29)

(S2) {vk}k∈N is such that
∑+∞

k=0 vk < +∞;

(S3) {vk}k∈N satisfies: for every δ > 0, there exists k0 ∈ N such that vk ≤ δ||dk||2, for all

k ≥ k0.

The strategy (S3) may seem strong at first glance. However, Example 4.2.2 provides

other examples that satisfy (S3). On the other hand, following [21], we also consider the

following alternative form:

(S3’) Fix any δ̄ ∈ (0, ρ
2
− θ). There exists k0 ∈ N such that vk ≤ δ̄∥dk∥2, for all k ≥ k0.

Remark 4.2.5. By Proposition (4.2.4), we have 0 ≤
(
ρ
2
− θ
)
||dk||2 ≤ f(xk)− f(xk+1) +

vk + εk, for all k ∈ N. Then, we can take vk+1 ≥ 0 satisfying (4.29). In particular, when

εk = 0, for all k ∈ N, (4.29) recovers the strategy defined in [21].

Lemma 4.2.1. If
∑+∞

k=0 εk < +∞ and {vk}k∈N satisfies (S1) with ∆min > 0, then {vk}k∈N
satisfies (S2).
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Proof. Note that (4.29) provides

0 ≤ ∆k+1

(
f(xk)− f(xk+1) + vk + εk

)
≤
(
f(xk) + vk

)
−
(
f(xk+1) + vk+1

)
+ εk, ∀k ∈ N.

Hence, 0 < ∆min ≤ ∆k+1 implies that

0 ≤ ∆min

(
f(xk)− f(xk+1) + vk + εk

)
≤
(
f(xk) + vk

)
−
(
f(xk+1) + vk+1

)
+ εk. (4.30)

Considering the partial sum in the expressions of the last inequalities, it holds that

∆min

N∑
k=0

(
f(xk)− f(xk+1) + vk + εk

)
≤

N∑
k=0

[(
f(xk) + vk

)
−
(
f(xk+1) + vk+1

)
+ εk

]
= f(x0) + v0 − f(xN+1)− vN+1 +

N∑
k=0

εk

Since f ∗ = inf
x∈Rn

f(x) and vk ≥ 0 for all k ∈ N, then f ∗ ≤ f(xN+1) implies −f ∗ ≥

−f(xN+1), for all N ∈ N, and −vN+1 ≤ 0. Therefore,

∆min

N∑
k=0

(
f(xk)− f(xk+1) + vk + εk

)
≤ f(x0) + v0 − f ∗ +

N∑
k=0

εk

Thus, since
∑+∞

k=0 εk < +∞ and ∆min > 0, we take the limit as N → +∞ to conclude

that
∑+∞

k=0

(
f(xk)− f(xk+1) + vk + εk

)
< +∞.

On the other hand, (4.30) implies that

0 ≤ vk+1 ≤ (1−∆min)
(
f(xk)− f(xk+1) + vk + εk

)
Since

∑+∞
k=0

(
f(xk)− f(xk+1) + vk + εk

)
< +∞, we conclude that

+∞∑
k=0

vk < +∞.

Therefore, {vk}k∈N satisfies (S2) and the claim is proved.

Example 4.2.1. Take any v0 > 0, and define ∆k+1 and vk as follows:

0 < ∆min ≤ ∆k+1 < 1, 0 < vk := (1−∆k+1)
(ρ
2
− θ + αλ2

k

)
||dk||2, ∀k ∈ N. (4.31)

Then, Proposition 4.2.4 yields
(ρ
2
− θ + αλ2

k

)
||dk||2 ≤ f(xk)− f(xk+1) + vk + εk. Thus,

whenever dk ̸= 0, we have

0 < vk+1 ≤ (1−∆k+1)
(
f(xk)− f(xk+1) + vk + εk

)
.

Hence, {vk}k∈N defined in (4.31) satisfies (S1). Therefore, considering that ∆min > 0,

and
∑+∞

k=0 εk < +∞, we conclude from Lemma 4.2.1 that {vk}k∈N ⊂ R++ also satisfies

(S2).
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Example 4.2.2. [21, Example 4] Let ω > 0 be a constant. Then, the sequence {vk}k∈N ⊂

R++ defined by

vk :=
ω

k + 1
||dk||2,

for each k ∈ N, satisfies (S3). Indeed, given δ > 0, since lim
k→+∞

ω

k + 1
= 0, then there

exists k0 ∈ N such that
ω

k + 1
≤ δ,

for all k ≥ k0, which implies that vk ≤ δ||dk||2, for all k ≥ k0.

More generally, if {uk}k∈N ⊂ R++ is such that lim
k→+∞

uk = +∞, then vk := ω
uk
||dk||2

satisfies (S3). Indeed, given δ > 0, there exists k0 ∈ N such that 0 <
ω

δ
≤ uk, for all

k ≥ k0, i.e.,
ω

uk
≤ δ, for all k ≥ k0, which implies that

vk =
ω

uk

||dk||2 ≤ δ||dk||2,

for all k ≥ k0.

4.2.2 Convergence Analysis

Note that in the convergence analysis of Algorithm 1 and Algorithm 2, we used

the fact that lim
k→+∞

||dk|| = 0, which arises naturally from the fact that
{
f(xk)

}
k∈N is

convergent. The following proposition provides a sufficient condition to guarantee that

each cluster point, if any, is a critical point.

Proposition 4.2.5. If lim
k→+∞

||dk|| = 0 and lim
k→+∞

εk = 0, then each cluster point of{
xk
}
k∈N, if any, is critical.

Proof. Let x∗ be a cluster point of
{
xk
}
k∈N. Then there exists a subsequence

{
xkj
}
such

that lim
j→+∞

xkj = x∗. As dk = yk − xk and lim
k→+∞

||dk|| = 0, due to

||ykj − x∗|| = ||ykj − xkj + xkj − x∗||

≤ ||ykj − xkj ||+ ||xkj − x∗||,

we have that lim
j→+∞

||ykj − x∗|| = 0, i.e., lim
j→+∞

ykj = x∗.

Moreover, due to ξkj ∈ ∂g(ykj), for all j ∈ N, and Proposition 1.2.2, the sequence{
ξkj
}
j∈N is bounded. Without loss of generality, we suppose it convergent and consider
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ξ∗ = lim
j→+∞

ξkj . Note that ||ξk − wk|| ≤ θ||yk − xk|| implies lim
j→+∞

||ξkj − wkj || = 0. As

||wkj − ξ∗|| = ||wkj − ξkj + ξkj − ξ∗||

≤ ||wkj − ξkj ||+ ||ξkj − ξ∗||,

we have that lim
j→+∞

||wkj − ξ∗|| = 0, i.e., lim
j→+∞

wkj = ξ∗.

Fix an arbitrary y ∈ Rn. Since wkj ∈ ∂εkjh(x
kj), we have

h(y) ≥ h(xkj) + ⟨wkj , y − xkj⟩ − εkj .

Taking the limit as j → +∞, and considering the continuity of h, it holds that h(y) ≥

h(x∗) + ⟨ξ∗, y − x∗⟩. Due to the arbitrariness of y ∈ Rn, we conclude that ξ∗ ∈ ∂h(x∗).

Furthermore, as ξkj ∈ ∂g(ykj), we obtain that ξ∗ ∈ ∂g(x∗). Therefore, x∗ is a critical

point.

Setting εk = 0 for all k ∈ N, the last proposition recovers Proposition 4.1.1.

Theorem 4.2.1. Suppose that {vk}k∈N ⊂ R++ satisfies (S2), and {εk}k∈N satisfies∑+∞
k=0 εk < +∞. Then, each cluster point of {xk}k∈N, if any, is critical.

Proof. Proposition 4.2.4 provides f(xk+1) ≤ f(xk) −
(ρ
2
− θ + αλ2

k

)
||dk||2 + vk + εk, for

all k ∈ N. Thus, since θ ∈
[
0,

ρ

2

)
, we have that

ρ

2
− θ > 0. Hence,(ρ

2
− θ
)
||dk||2 ≤

(ρ
2
− θ + αλk

2
)
||dk||2

≤ f(xk)− f(xk+1) + vk + εk.

Taking the N-th partial sum in the above inequality, we obtain

N∑
k=0

(ρ
2
− θ
)
||dk||2 ≤

N∑
k=0

[
f(xk)− f(xk+1)

]
+

N∑
k=0

vk +
N∑
k=0

εk

= f(x0)− f(xN+1) +
N∑
k=0

vk +
N∑
k=0

εk

≤ f(x0)− f ∗ +
N∑
k=0

vk +
N∑
k=0

εk,

where f ∗ := infx∈Rn f(x) > −∞. Taking the limit as N → +∞, we have

+∞∑
k=0

(ρ
2
− θ
)
||dk||2 ≤ f(x0)− f ∗ +

+∞∑
k=0

vk +
+∞∑
k=0

εk < +∞,

which proves that
∑+∞

k=0 ||dk||2 < +∞. In particular, lim
k→+∞

||dk||2 = 0. Thus, by the

previous proposition, the result follows.
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Theorem 4.2.2. Suppose that {vk}k∈N ⊂ R++ satisfies (S3), and {εk}k∈N satisfies∑+∞
k=0 εk < +∞. Then, each cluster point of {xk}k∈N, if any, is critical.

Proof. Set δ := 1
2

(
ρ
2
− θ
)
> 0. Then, for all k ≥ k0,

vk ≤ δ||dk||2 = 2δ||dk||2 − δ||dk||2,

which implies that δ||dk||2 ≤ 2δ||dk||2 − vk. Therefore, by Proposition 4.2.4, we have that

δ||dk||2 ≤ 2δ||dk||2 − vk

=
(ρ
2
− θ
)
||dk||2 − vk

≤ f(xk)− f(xk+1) + εk, ∀k ≥ k0. (4.32)

Taking the partial sum in the expression above and considering f ∗ := infx∈Rn f(x), we

have that

δ
N∑
k=0

||dk||2 ≤
N∑
k=0

[
f(xk)− f(xk+1) + εk

]
= f(x0)− f(xN+1) +

N∑
k=0

εk

≤ f(x0)− f ∗ +
N∑
k=0

εk.

Taking the limit as N → +∞, since
∑+∞

k=0 εk < +∞, we obtain
∑+∞

k=0 ||dk||2 < +∞. In

particular, lim
k→+∞

||dk||2 = 0.

Remark 4.2.6. Note that Theorem 4.2.1 and Theorem 4.2.2 recover Theorem 4.1.2, when

we consider εk = 0 for all k ∈ N. Moreover, if there exists k0 ∈ N such that εk ≤ δ||dk||2

for all k ≥ k0 in Theorem 4.2.2, then (4.32) implies

f(xk+1) ≤ f(xk),

for all k ≥ k0. In this case, it is sufficient suppose that lim
k→+∞

εk = 0 to guarantee that

lim
k→+∞

||dk|| = 0.

Theorem 4.2.3. If the sequence {vk}k∈N ⊂ R++ is chosen according to strategy (S1),

with ∆min > 0, and
∑+∞

k=0 εk < +∞, then every cluster point of {xk}k∈N, if any, is a

critical point of f .
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Proof. Since ∆min > 0 and
∑+∞

k=0 εk < +∞, Lemma 4.2.1 implies that {vk}k∈N satisfies

(S2). Then, by using Theorem 4.2.1, we obtain that every cluster point of {xk}k∈N, if

any, is a critical point of f .

The last theorem recover item (iii) of Theorem 4.1.3, when we set εk = 0 for all k ∈ N,

and the next theorem recovers Theorem 4.1.3.

Theorem 4.2.4. Suppose εk = 0 for all k ∈ N. If the sequence {vk}k∈N ⊂ R++ is chosen

according strategy (S1), the following statements hold:

(i) The sequence
{
f(xk) + vk

}
k∈N is non-increasing and convergent;

(ii) If lim
k→+∞

vk = 0, then every cluster point of
{
xk
}
k∈N, if any, is a critical point of f .

Proof. Proof of item (i): Setting εk = 0 for all k ∈ N, then (4.30) in Lemma 4.2.1 becomes

0 ≤ ∆min

(
f(xk)− f(xk+1) + vk

)
≤
(
f(xk) + vk

)
−
(
f(xk+1) + vk+1

)
,

which implies that f(xk)+ vk ≤ f(xk+1)+ vk+1 for all k ∈ N, i.e.,
{
f(xk) + vk

}
k∈N is non-

increasing. By using assumption(H2) and {vk}k∈N ⊂ R++, we obtain that either
{
f(xk)

}
and {vk} are lower bounded. Thus

{
f(xk) + vk

}
k∈N is bounded and non-increasing, there-

fore it is convergent. Proof of item (ii): Since lim
k∈N

vk = 0, from item (i) we have that{
f(xk)

}
is convergent. On the other hand, since εk = 0 for all k ∈ N, inequality (4.28) in

Proposition 4.2.4 becomes(ρ
2
− θ
)
∥dk∥2 ≤ f(xk)− f(xk+1) + vk,

for all k ∈ N. Thus, taking the limit on the last inequality, we have that lim
k→+∞

∥dk∥2 = 0.

Therefore, by using Proposition 4.2.5 we complete the proof.

4.2.3 Iteration-complexity analysis

In this section, we present our results of iteration-complexity bounds for
{
xk
}
k∈N by

Algorithm 4, which recover Theorem 4.1.4 and Theorem 4.1.5. We consider the cases

whose the sequence {vk}k∈N is choosing according to (S2) and (S3). The following results

are based on Proposition 4.2.4 which implies, in particular,(ρ
2
− θ
)
||dk||2 ≤ f(xk)− f(xk+1) + vk + εk, (4.33)

for all k ∈ N.
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Theorem 4.2.5. Suppose that the sequence {vk}k∈N ⊂ R++ is chosen according to strategy

(S2) and
∑+∞

k=0 ε < +∞. For each N ∈ N, we have

min
{
∥dk∥ : k = 0, 1, · · · , N − 1

}
≤

√
f(x0)− f ∗ +

∑+∞
k=0 vk +

∑+∞
k=0 εk√

ρ
2
− θ

1√
N
.

Consequently, for a given accuracy ε > 0, if

N ≥

(
f(x0)− f ∗ +

+∞∑
k=0

vk +
+∞∑
k=0

εk

)
/
[(ρ

2
− θ
)
ε2
]
,

then the following inequality holds min{∥dk∥ : k = 0, 1, · · · , N − 1} ≤ ε.

Proof. By assumption (H2), f ∗ = infx∈Rn f(x) ≤ f(xk), for all k ∈ N, from (4.33) we

obtain that

N−1∑
k=0

∥dk∥2 ≤ 1
ρ
2
− θ

(
f(x0)−f(xN)+

N−1∑
k=0

vk++
N−1∑
k=0

εk

)
≤ 1

ρ
2
− θ

(
f(x0)−f ∗+

+∞∑
k=0

vk++
+∞∑
k=0

εk

)
.

and hence

N ·min{∥dk∥2 : k = 0, 1, · · ·N − 1} ≤ f(x0)− f ∗ +
∑+∞

k=0 vk ++
∑+∞

k=0 εk
ρ
2
− θ

.

Thus,

min
{
∥dk∥ : k = 0, 1, · · · , N − 1

}
≤

√
f(x0)− f ∗ +

∑+∞
k=0 vk +

∑+∞
k=0 εk√

ρ
2
− θ

1√
N
. (4.34)

Moreover, given ε > 0, if

N ≥ f(x0)− f ∗ +
∑+∞

k=0 vk +
∑+∞

k=0 εk(
ρ
2
− θ
)
ε2

,

then

f(x0)− f ∗ +
+∞∑
k=0

vk +
+∞∑
k=0

εk ≤ N
(ρ
2
− θ
)
ε2,

which combining with (4.34) provides

min
{
∥dk∥ : k = 0, 1, · · · , N − 1

}
≤

√
f(x0)− f ∗ +

∑+∞
k=0 vk +

∑+∞
k=0 εk√

ρ
2
− θ

1√
N

≤

√
Nε2

(
ρ
2
− θ
)

√(
ρ
2
− θ
) 1√

N

= ε,

which concludes the proof.
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Theorem 4.2.6. Suppose that the sequence {vk}k∈N ⊂ R++ is chosen according to strategy

(S3) and {εk}k∈N is such that εk ≤ ξ
(

ρ
2
− θ
)
||dk||2, for all k ∈ N. Let 0 < ξ < 1/2 and

k0 ∈ N such that vk ≤ ξ
(

ρ
2
− θ
)
∥dk∥2, for all k ≥ k0. Then, for each N ∈ N such that

N > k0, one has

min{∥dk∥ : k = 0, 1, · · · , N − 1} ≤

√
f(x0)− f ∗ +

∑k0−1
k=0 vk +

∑k0−1
k=0 εk√

(1− ξ)
(

ρ
2
− θ
) 1√

N
.

Consequently, for a given ε > 0 and k0 ∈ N such that vk ≤ ξ
(

ρ
2
− θ
)
∥dk∥2 for all k ≥ k0,

if

N ≥ max

k0,
f(x0)− f ∗ +

∑k0−1
k=0 vk +

∑k0−1
k=0 εk(

ρ
2
− θ
)
(1− ξ)ε2

 ,

then min
{
∥dk∥ : k = 0, 1, · · · , N − 1

}
≤ ε.

Proof. Let ξ ∈ (0, 1/2) and k0 ∈ N such that vk ≤ ξ
(

ρ
2
−θ
)
∥dk∥2, for all k ≥ k0. It follows

from (4.33) that
(

ρ
2
− θ
)
∥dk∥2 ≤ f(xk) − f(xk+1) + vk + εk, for all k = 0, · · · , N − 1.

Summing up the last inequality from k = 0 to K = N − 1 and using assumption (H2)

we have that(ρ
2
− θ
)N−1∑

k=0

∥dk∥2 ≤ f(x0)− f ∗ +

k0−1∑
k=0

vk +
N−1∑
k=k0

vk +

k0−1∑
k=0

εk +
N−1∑
k=k0

εk

Since εk ≤ ξ
(

ρ
2
− θ
)
||dk||2 and vk ≤ ξ

(
ρ
2
− θ
)
||dk||2,for all k ∈ N, the a=last inequality

becomes

N−1∑
k=0

(ρ
2
− θ
)
∥dk∥2 ≤f(x0)− f ∗ +

k0−1∑
k=0

vk +
N−1∑
k=k0

ξ
(ρ
2
− θ
)
||dk||2 +

k0−1∑
k=0

εk

+
N−1∑
k=k0

ξ
(ρ
2
− θ
)
||dk||2

=f(x0)− f ∗ +

k0−1∑
k=0

vk +

k0−1∑
k=0

εk + 2
N−1∑
k=k0

ξ
(ρ
2
− θ
)
||dk||2,

which implies that

N−1∑
k=0

(ρ
2
− θ
)
∥dk∥2 ≤ f(x0)− f ∗ +

k0−1∑
k=0

vk +

k0−1∑
k=0

εk + 2
N−1∑
k=k0

ξ
(ρ
2
− θ
)
||dk||2,
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And then
N−1∑
k=0

(1− 2ξ)||dk||2 ≤ f(x0)− f ∗ +

k0−1∑
k=0

vk +

k0−1∑
k=0

εk.

Therefore, we have

N ·min
{
||dk||2 : k = 0, . . . , N − 1

}
≤ f(x0)− f ∗ +

∑k0−1
k=0 vk +

∑k0−1
k=0 εk

(1− 2ξ)
(

ρ
2
− θ
) ,

which implies that

min
{
||dk|| : k = 0, · · · , N − 1

}
≤

√
f(x0)− f ∗ +

∑k0−1
k=0 vk +

∑k0−1
k=0 εk√

(1− 2ξ)
(

ρ
2
− θ
) 1√

N
, (4.35)

and it proves the first inequality. Moreover, if

max

k0,
f(x0)− f ∗ +

∑k0−1
k=0 vk +

∑k0−1
k=0 εk(

ρ
2
− θ
)
(1− 2ξ)ε2

 ≤ N,

then, in particular,

f(x0)− f ∗ +

k0−1∑
k=0

vk +

k0−1∑
k=0

εk ≤ N
(ρ
2
− θ
)
(1− 2ξ)ε2,

which combined with (4.35) provides

min
{
||dk|| : k = 0, · · · , N − 1

}
≤

√
f(x0)− f ∗ +

∑k0−1
k=0 vk +

∑k0−1
k=0 εk√

(1− 2ξ)
(

ρ
2
− θ
) 1√

N

≤

√
N
(

ρ
2
− θ
)
(1− 2ξ)ε2√

(1− 2ξ)
(

ρ
2
− θ
)
N

= ε,

thus we finish the demonstration

Theorem 4.2.7. Suppose that the sequences {vk}k∈N ⊂ R++ and {εk}k∈N ⊂ R++ satisfy

lim
N→∞

∑N−1
k=0 vk
N

= 0 and lim
N→∞

∑N−1
k=0 εk
N

= 0. Then, lim inf
k→+∞

∥dk∥ = 0.
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Proof. Taking the partial sum in (4.33) and using assumption (H2), we obtain

N−1∑
k=0

(ρ
2
− θ
)
||dk||2 ≤

N−1∑
k=0

[
f(xk)− f(xk+1)

]
+

N−1∑
k=0

vk +
N−1∑
k=0

εk

= f(x0)− f(xN) +
N−1∑
k=0

vk +
N−1∑
k=0

εk

≤ f(x0)− f ∗ +
N−1∑
k=0

vk +
N−1∑
k=0

εk.

Therefore,

N ·min
{
||dk||2 : k = 0, . . . , N − 1

}
≤ 1

ρ
2
− θ

(
f(x0)− f ∗ +

N−1∑
k=0

vk +
N−1∑
k=0

εk

)
,

which implies

min
{
||dk||2 : k = 0, . . . , N − 1

}
≤ 1

ρ
2
− θ

(
f(x0)− f ∗

N
+

∑N−1
k=0 vk
N

+

∑N−1
k=0 εk
N

)
,

and then

min
{
||dk|| : k = 0, . . . , N − 1

}
≤

√√√√ 1
ρ
2
− θ

(
f(x0)− f ∗

N
+

∑N−1
k=0 vk
N

+

∑N−1
k=0 εk
N

)
.

(4.36)

Taking the limit asN → +∞ in (4.36), we obtain that lim
N→∞

min
{
||dk|| : k = 0, . . . , N − 1

}
= 0. Thus, there exists a subsequence of {∥dk∥}k∈N that converges to 0 as k → ∞. There-

fore, since ||dk|| > 0 for all k ∈ N, it follows that lim inf
k→+∞

∥dk∥ = 0.

4.3 Numerical illustration

The numerical illustrations in this section were conducted using MATLAB software.

The initial points were randomly chosen within the box [−10, 10] × [−10, 10]. To solve

the subproblems, we used the fminsearch toolbox with the inner stop rule:

optimset(’TolX’,1e-7,’TolFun’,1e-7). The stopping criterion for the algorithm was

||xk+1 − xk|| < 10−5. In the Example 4.3.1, the constants in the definition of Algorithm

4 were set as α = 0.6, β = 0.1, λ̄ = 1 and θ = 0.2.

MATLAB solves Example 4.3.1 (see Example 3.3.1) inaccurately when computing the

subproblem using the fminsearch toolbox. In this section, we verify computationally

that the solution found by MATLAB satisfies the inequalities (4.10) and (4.11) in Figures

4.1 and 4.2.
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Example 4.3.1. (Example 3.3.1 revisited) Let f : R2 → R given by f(x, y) = x2+y2+x+

y−|x|−|y|. We can obtain a DC decomposition of f as follows: f(x, y) = g(x, y)−h(x, y),

where g(x, y) = 3
2
(x2 + y2) + x+ y and h(x, y) = 1

2
(x2 + y2) + |x|+ |y|.
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100
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k
||

||y
k
-x

k
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Figure 4.1: Example 4.3.1 starting from x0 = (6.2945, 8.1158).

In the Example 4.3.2, the constants in the definition of Algorithm 4 were set as

α = 0.6, β = 0.1, λ̄ = 1 and θ = 0.2. The sequence of parameters {vk}k∈N were chosen as

vk = 0.01 ||dk||2
k+1

, for all k ∈ N.

Example 4.3.2. (Example 2.3.1 revisited) Let f : R2 → R given by f(x, y) = 1
2
(x2+y2)+

|x|+|y|−5
2
x. We can obtain a DC decomposition of f as follows: f(x, y) = g(x, y)−h(x, y),

where g(x, y) = x2 + y2 + |x|+ |y| − 5
2
x and h(x, y) = 1

2
(x2 + y2). The minimum point of

f is xopt = (1.5, 0) and the optimum value is fopt = −1.125.
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Figure 4.2: Example 4.3.2 starting from x0 = (−4.4615,−9.0766).
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Conclusion

We have proposed an inexact version of BDCA and more general nmBDCA, where

both the subgradient of the first component and the subproblem are computed inexactely.

We have proposed a sufficient condition for any inexact direction to be a inexact direction

as in BDCA. To this end we have studied the convergence analysis of DCA, BDCA and

nmBDCA. We have shown that our inexact version have the same properties then its

exact version. All the methods have been illustrated computationally.
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