
Gabapentin, a Synthetic Analogue of Gamma Aminobutyric
Acid, Reverses Systemic Acute Inflammation and Oxidative
Stress in Mice

Jordana Maia Dias,1 Tarcisio Vieira de Brito,1 Diva de Aguiar Magalhães,1

PammelaWeryka da Silva Santos,1 Jalles Arruda Batista,1 EulinaGabriela doNascimento Dias,1

Heliana de Barros Fernandes,1 Samara Rodrigues Bonfim Damasceno,2 Renan O. Silva,2

Karoline S. Aragão,2 Marcellus H. L. P. Souza,2 Jand-Venes R. Medeiros,1 and
André Luiz R. Barbosa1,3

Abstract—The aim of this study was to investigate the potential anti-inflammatory and anti-oxidant e-
ffects of gabapentin (GBP) inmice. The anti-inflammatory and anti-oxidant effects were evaluated using
various mediators that induce paw edema, peritonitis model, myeloperoxidase (MPO) activity, proin-
flammatory cytokine levels, glutathione (GSH) consumption, and malondialdehyde (MDA) production
in mice. Pretreatment of mice with GBP (1 mg/kg) significantly reduced carrageenan or dextran-induced
paw edema (P<0.05) when compared to vehicle group. Adding to this, GBP (1 mg/kg) significantly
inhibited paw edema induced by histamine, serotonin, bradikinin, 48/80 compound, and prostaglandin
E2. In the carrageenan-induced peritonitis model, GBP significantly decreased total and differential le-
ukocyte counts and reduced the levels of MPO activity in the plantar tissue and IL-1β and TNF-α co-
ncentrations in the peritoneal exudate. The same dose of GBP also decreased the MDA concentration
and increased the levels of GSH into the peritoneal fluid. In summary, our results demonstrated that GBP
exhibited anti-inflammatory activity in mice by reducing the action of inflammatory mediators, neutro-
phil migration and proinflammatory cytokine levels, and anti-oxidant properties by decreasing the co-
ncentration of MDA and increasing the GSH content. These observations raise the possibility that GBP
could be used to improve tissue resistance to damage during inflammatory conditions.
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INTRODUCTION

Gabapentin (GBP) is an anti-convulsant drug struc-
turally related to γ-aminobutyric acid. Evidence obtained

in a number of experimental models of neuropathic pain
and inflammatory hyperalgesia [1, 2] shows that GBP has
an effective anti-nociceptive or anti-hyperalgesic action, in
addition to being an anti-convulsant. In humans, GBP has
become increasingly popular as a treatment for chronic
neuropathic pain. Clinical studies have shown that GBP
is an effective analgesic in different types of neuropathic
pain syndromes, such as diabetic neuropathy [3], posther-
petic neuralgia [4], and trigeminal neuralgia [5].

The literature data show that the GBP can also
reverse the gastric inflammatory damage induced by
indomethacin and ethanol and diminish the acute in-
flammatory process induced by carrageenan into the
mice paw [6]. Paw edema induced by carrageenan can
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be mediated by several mediators and intense neutro-
phil influx [7, 8]. However, the action of GBP against
the inflammatory condition established by vascular
inflammatory mediators and by the release of cyto-
kines, free radicals, and neutrophil migration is still
largely unknown.

The inflammatory process involves a complex
cascade of biochemical and cellular events that occur
in response to cellular injury [9], which is character-
ized by neutrophil migration occurring in locally
produced inflammatory mediators, including TNF-α
and IL-1β, which activate neutrophils and promote
their migration to the inflammatory site [10, 11], as
well as a variety of chemical mediators such as
histamines, serotonin, bradykinins, and prostaglandins
[12–14]. Those mediators cause increased vascular
permeability and promote extravasation of low levels
of protein and neutrophils [15].

Knowing that the GBP can reduce some conditions of
the inflammatory response, the aim of this study is to test
whether GBP is able to inhibit the paw edema induced by
several inflammatory mediators, production of free-radical
scavengers, neutrophil infiltration, and release of proin-
flammatory cytokines.

METHODS

Animals

Male Swiss mice (25–35 g) were sourced by the
Central Animal Facility of the Federal University of
Piauí. The animals were housed at 25±2 °C under a
12:12-h light/dark cycle, and food and water were supplied
ad libitum. Experiments were conducted in accordance
with current established principles for the care and use of
research animals (National Institutes of Health [NIH]
guidelines) and were approved by the ethics committees
in research of Faculdade Integral Diferencial—FACID,
number of protocol: 002/13.

Drugs and Reagents

The following drugs and reagents were used: carra-
geenan, dextran sulfate, histamin, serotonin, prostaglandin
E2 (PGE2), 48/80, aminoguanidine, L-arginine, and indo-
methacin (Sigma Aldrich, St Louis, MO, USA). These
drugs were dissolved in sterile saline (0.9 % NaCl).

Experimental Protocol

Carrageenan-Induced Paw Edema

The animals were randomly divided into six groups
(n=5), and edema was induced by the injection of 50μL of
a suspension of carrageenan (CG; 500 μg/paw) adminis-
tered with a subplantar injection into the right paw (group
I). The mice were pretreated intraperitoneally (i.p.) with
either 0.9 % NaCl (group II, untreated control); 10 mg/kg
indomethacin (group III, reference control); or 0.1, 0.5, or
1 mg/kg of GBP, i.p, respectively, 1 h before the carrageen-
an injection. Paw volume was measured immediately be-
fore (V0) and at 1, 2, 3, and 4 h after carrageenan treatment
(Vt) with a plethysmometer (PANLAB, LE7500). The
effect of pretreatment was calculated as the percentage of
inhibition of edema relative to the paw volume of the
saline-treated controls by using the following formula [16]:

% inhibitionof edema ¼ V t−V 0ð Þ Control − V t−V 0ð Þ Treated
V t−V 0ð ÞControl � 100

where V0 is the basal volume and Vt is the final volume
measured at the indicated times

Paw edema Induced by Different Inflammatory Agents

To induce paw edema with different inflamma-
tory agents, the animals received injections of dex-
tran (DXT; 500 μg/paw), serotonin (5-HT; 1 %w/v),
histamine (HIST; 100 μg/paw), bradykinin (BK;
6.0 nmol paw), PGE2 (3 nmol/paw), and 48/80
(12 μg/paw) into the right hind paw. One group
received 50 μL of 0.9 % sterile saline and served
as an untreated control group. GBP (1 mg/kg) or
indomethacin (INDO; 10 mg/kg, reference control)
was given i.p. 30 min before intraplantar injections
of phlogistic agents. For paw edema induced by
dextran, serotonin, histamine, bradykinin, PGE2, and
48/80, the paw volume was measured using plethys-
mometer (PANLAB, LE7500) before the injection of
inflammatory agents (time zero). Hence, the paw
volume was measured for 30, 60, 90, and 120 min
after the injection of those inflammatory agents, ex-
cept for dextran or histamin, which was measured for
30 min and 1, 2, 3, and 4 h using the same
plethysmometer.

Measurement ofMyeloperoxidase Activity inMice Paw

Neutrophil infiltration in the mouse paw was mea-
sured throughmyeloperoxidase (MPO) activity evaluation.
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Briefly, 50–100-mg hind paw tissue was homogenized in
1-mL potassium buffer with 0.5 % hexadecyltrimethylam-
monium bromide for each 50-mg tissue. The homogenate
was centrifuged at 40,000g for 7 min at 4 °C.MPO activity
in the resuspended pellet was assayed by measuring the
change in absorbance at 450 nm using o-dianisidine dihy-
drochloride and 1 % hydrogen peroxide. The results were
reported as the MPO units/milligram of tissue. A unit of
MPO (UMPO) activity was defined as converting 1 μmol
hydrogen peroxide to water in 1 min at 22 °C.

Peritonitis Assay

Mice were pretreated with oral administration of
250 μL sterile saline or indomethacin 10 mg/kg or GBP
1mg/kg. One hour later, the animals were injected i.p. with
250 μL of the carrageenan (500 μg/cavity). The mice were
killed by cervical dislocation under anesthesia 4 h later, and
the peritoneal cavity was washed with 1.5 mL heparinized
phosphate-buffered saline (PBS) to count peritoneal cells.
Total cell counts were performed in a Neubauer chamber,
and differential cell (neutrophils) counts (total of 100 cells)
were carried out on cytocentrifuge slides stained with
hematoxylin and eosin. The results were presented as the
number of total leukocyte cells or neutrophils per milliliter
of peritoneal exudate.

Cytokine Measurements

The levels of IL-1β and TNF-α were evaluated using
sandwich ELISA. Briefly, microliter plates were coated
overnight at 4 °C with antibody against mice IL-1β or
TNF-α (2 μg/mL). Blocking of nonspecific binding sites
was accomplished by incubating the plates with PBS con-
taining 2 % bovine serum albumin (BSA) for 90 min at
37 °C. After blocking the plates, the test samples and each
standard at various dilutions were added in duplicate and
incubated at 4 °C for 24 h. The plates were washed three
times with buffer. After washing the plates, 50 μL of
biotinylated sheep polyclonal anti-IL-1β and anti-TNF-α
(diluted 1:1000 with assay buffer 1 % BSA) was added to
the wells. After a further incubation at room temperature
for 1 h, the plates were washed, and 50 μL of streptavidin-
HRP diluted 1:5000 was added to all wells. The reagent o-
phenylenediamine dihydrochloride (50 μL) was added
15 min later, and the plates were incubated in the dark at
37 °C for 15–20 min. After the color development, the
reaction was stopped with the addition of sulfuric acid
(1 M), and absorbance was measured at 490 nm. The
results are expressed as picogram per milligram of protein
and reported as mean ± SD.

Measurement of Malondialdehyde

The malondialdehyde (MDA) concentration was
measured using the method described previously with
modifications [17].

Measurement of Levels of Glutathione

The glutathione (GSH) levels in the fragments of
intestinal tissue were determined according to the method
described previously with modification [18].

Statistical Analysis

Results are expressed as mean ± SEM from at least
five animals per group. Statistical analysis was performed
using analysis of variance followed by the Newman-Keuls
post hoc test, when appropriate. Statistical significance was
set at p<0.05.

RESULTS

Effect of Gabapentin on Carrageenan-Induced Paw
edema in Mice

Table 1 shows that the administration of carrageenan
into the plantar surface (500 μg per paw) induced severe
paw edema within 1 h of injection and was maintained
until 4 h after injection. Indomethacin (10 mg/kg) admin-
istration significantly decreased paw edema throughout the
experimental period (*p<0.05), with maximal inhibition of
100 %. Similarly, GBP (1 mg/kg, i.p.) inhibited edema
formation in all times. At 2, 3, or 4 h, compared with the
carrageenan group, the animals pretreated with 1 mg/kg of
GBP showed 87.2, 77.8, and 69.4 % reduction in paw
edema, respectively. GBP prevented carrageenan-induced
paw edema (500 μg per paw/50 μl) with maximal inhibi-
tory effect at dose of 1 mg/kg (2 h, 0.01±0.007 mL; 3 h,
0.022±0.001 mL; 4 h, 0.025±0.007 mL). Therefore, this
dose was selected for studying the possible mechanisms of
action involved in GBP-mediated decrease in inflammato-
ry response.

Effect of Gabapentin on Paw Edema Inflammation
Induced by Different Inflammatory Agents

The injection of GBP (1 mg/kg, i.p.) significantly
reduced the edema induced by all the phlogistic agents
during the times tested, mainly in the first 30 min, the peak
time of edemas tested (Fig. 1). The group treated with GBP
(0.003±0.0008) reverted the paw edema induced by dextran
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(0.0312±0.0030; Fig. 1a). GBP also significantly inhibited
the increase in paw volume of animals treatedwith serotonin
(0.048±0.015; Fig. 1b), histamine (0.103±0.025; Fig. 1c),
bradykinin (0.058±0.005; Fig. 1d), PGE2 (0.033±0.014;
Fig. 1e), and 48/80 (0.079±0.013; Fig. 1f). On the other
hand, the saline injected into the paw did not induce any
effect. The values given are means ± SEM (n=5).

Effect of Gabapentin on Carrageenan-Induced
Myeloperoxidase Activity in Paw Tissue

We can observe in Fig. 2 that the carrageenan sub-
plantar injection elevated the concentration of MPO in the
plantar tissue (17.73±3.85 UMPO/mg of tissue) when this
group is compared to the saline group (0.84±0.19
UMPO/mg of tissue). On the other hand, pretreatment with
GBP (1 mg/kg) reduced the action of this tissue enzyme
(1.10±0.33 UMPO/mg of tissue; Fig. 2).

Effect of Gabapentin on Carrageenan-Induced
Cytokine Production in Peritonitis

Figure 3 shows that intraperitoneal administration
of carrageenan was found to induce a marked increase
in IL-1β concentrations in the peritoneal exudates
(1.125±37.40 pg/mL). The level of IL-1β in the peri-
toneal cavity of control animals (saline group) was
127.0±19.04 pg/mL. Compared with the carrageenan
group, the animals pretreated with GBP (1 mg/kg, i.p)
showed significantly decreased IL-1β peritoneal con-
centration (599.3±113.1 pg/mL; Fig. 3a). Furthermore,
GBP treatment decreased the levels of TNF-α (90.12±
14.22 pg/mL) compared to the peritoneal carrageenan
group (564.9±52.32 pg/mL; Fig. 3b).

Anti-Inflammatory Effect of Gabapentin
on Carrageenan-Induced Peritonitis in Mice

Figure 4 shows that the carrageenan group promoted
an increase in cell migration (leukocytes) into the perito-
neal cavity (16,675×103±2,252×103 cells/mL). However,
GBP group showed significantly reduced peritoneal
leukocyte count (1.760×103±123.9×103 cells/mL;
Fig. 4a). Furthermore, the same dose of GBP
significantly reduced neutrophil migration into the
peritoneal cavity (784.02×103±55.02×103 cells/mL)
compared with that in the carrageenan group (11,410×
103±2,392×103 cells/mL; Fig. 4b). This result was
consistent with the fact that neutrophils are the most
abundant cells in primary inflammatory exudates.

Effect of Gabapentin on MDA Levels in the Peritoneal
Exudates of Mice

Figure 5 shows that the injection of carrageenan
(41.83±1.788) significantly increased the levels of MDA
compared to the group that received only intraperitoneal
saline (22.88±3.075). However, the group pretreated with
GBP 1 mg/kg (24.55±1.192) had significantly reduced
MDA levels compared to the untreated group (Fig. 5).

Effect of Gabapentin on Glutathione Levels
in Peritoneal Exudate of Mice

Figure 6 shows that treatment with carrageenan
(41.98±4.515) increases the consumption of GSH com-
pared to the saline group (155.0±10.02). It was also ob-
served that the GBP (127.6±8.197) group significantly
increased GSH levels compared to the untreated group.

Table 1. Effect of Gabapentin on Carrageenan-Induced Paw Edema in Mice

Treatment Dose (mg/kg) Paw edema in milliliters (time after inflammatory stimuli administration)

1 h 2 h 3 h 4 h

Control (Cg)(1) – 0.067±0.002 0.078±0.006 0.101±0.010 0.081±0.001
Saline – 0.016±0.006* 0.013±0.004* 0.005±0.005* 0±0.0*
Indomethacin

(INDO)
10 0.006±0.004* 0±0.0* 0.061±0.007 0.011±0.007*

GBP 0.1 0.065±0.005 (3.7 %) 0.067±0.007 (14.5 %) 0.061±0.007 (39.4 %)* 0.077±0.006 (5.1 %)
0.5 0.061±0.012 (8.6 %) 0.066±0.010 (14.9 %) 0.067±0.006 (50 %)* 0.075±0.009 (8.16 %)
1 0.03±0.004 (55.6 %)* 0.01±0.007 (87.2 %)* 0.022±0.001 (77.8 %)* 0.025±0.007 (69.4 %)*

Values of paw edema are expressed as mean±SEM (n=5). The % inhibition of paw edema is indicated in parentheses
*p<0.05 compared with control (one-way analysis of variance followed by the Newman-Keuls post hoc test)
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Fig. 1. Effects of gabapentin on paw inflammation induced by different inflammatory agents. Edema was induced by a dextran (DXT; 500 μg/paw), b
serotonin (5-HT; 1%w/v), c histamine (HIST; 100μg/paw), d bradykinin (BK; 6.0 nmol/paw), e PGE2 (3 nmol/paw), and f 48/80 (12μg/paw). Animals were
pretreated with GBP (1 mg/kg i.p.), saline (SAL; control), or indomethacin (INDO; 10 mg/kg, i.p.). Each point represents the mean ± SEM of five animals.
*p<0.05 significantly different to the control group. Statistical analysis was performed by the Newman-Keuls post hoc test.
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DISCUSSION

The pharmacological approaches of GBP have drawn
attention of researchers from basic and clinical areas. GBP,
a drug used to improve neurological disorders such as
epilepsy and seizures [19, 20], reduces the inflammatory
hyperalgesia induced by acid-acetic and formalin tests in
mice [1, 21–25]. Another study revealed that this substance
inhibited the acute inflammatory responses that occur in
the indomethacin-induced gastropathy inflammation in rats
or carrageenan-induced paw edema [6]. However, the
mechanisms of this latter effect of GBP were not
elucidated.

In this manuscript, we report new insights into the
functions and possible mechanisms of GBP, including its
anti-inflammatory ability demonstrated by decreasing the
paw edema induced by carrageenan, dextran, and 48/80
and induced by several mediators, such as histamine, sero-
tonin, PGE2, and bradikinin, the levels of proinflammatory
cytokines (TNF-α and IL-1β), the neutrophil infiltration,
and its anti-oxidant ability demonstrated by increased GSH
levels and decreased MDA concentration.

Our results demonstrate that GBP was able to reduce
paw edema induced by carrageenan or dextran. Paw edema
in mice induced by carrageenan is used as a tool to inves-
tigate potential anti-inflammatory agents [26]. In this acute
inflammatory model, there are two phases. The first or

early phase is mediated by the release of histamine and
serotonin, followed by the subsequent release of bradyki-
nin and prostaglandins [25–27]. The late or second phase is
characterized by cytokine production and release of macro-
phages and mast cells and intense neutrophil infiltration
[28, 29, 8]. On the other hand, dextran-induced paw edema
promotes inflammation by increasing vascular permeabil-
ity dependent on mast cell degranulation and the subse-
quent release of histamine and serotonin [30]. The extrav-
asated fluid during dextran injection contains little protein
and few neutrophils [31]. The results suggested that the
anti-inflammatory effect of GBP seems to be mediated by
the inhibition of neutrophil infiltration into the inflamma-
tory site, as well as the inhibition of the release or activity
of inflammatory mediators.

The vascular phenomenon that occurs during the
acute phase of the inflammatory process is dependent on
the release of several mediators that act on the vascular
endothelium causing leakage of fluid and proteins into the
interstitium [32]. This event can be mediated by the action
of histamine, serotonin, bradikinin, PGE2, and/or induced
by 48/80 compound, which induces paw edema by mast
cell degranulation with the release of histamine, serotonin,
and bradikinin [33–35]. In this manuscript, GBP reduced
the paw edema induced by histamine, serotonin, bradiki-
nin, PGE2, and 48/80 compound. Thus, we can infer that
this drug affects the vascular component of edema, which

Fig. 2. Effect of gabapentin on carrageenan-induced myeloperoxidase activity in paw tissue. Saline or carrageenan (500 μg per paw) was injected into the
plantar surface of mice. One hour before this injection, animals had been treated with indomethacin (INDO; 10 mg/kg, i.p.) or gabapentin (GBP; 1 mg/kg,
i.p.). Myeloperoxidase (MPO) activity was detected in the paw tissue after 4 h. The results are expressed as the mean ± SEMMPO units (UMPO)/milligram
of tissue. *p<0.05 compared with carrageenan group; #p<0.05 compared with saline group. Statistical analysis was performed using analysis of variance
followed by the Newman-Keuls post hoc test.
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appears to be mediated by the decreased action of these
several inflammatory mediators.

The carrageenan-induced inflammatory response in
paw tissue is known to be accompanied by intense leuko-
cyte migration, primarily neutrophils [12]. MPO activity
has been found in neutrophil azurophilic granules, which is
an indicator of neutrophil accumulation [36, 37]. During

the neutrophil migration, MPO can be released on the
inflamed tissue, inducing damage to adjacent cells and thus
contributing to the pathogenesis of inflammatory process
[38]. Our results obtained showed that GBP (1 mg/kg) or
indomethacin (positive control) reduced the MPO concen-
tration in paw tissue after carrageenan injection. Thus, we
can suggest that GBP-reduced inflammatory process

Fig. 3. Effect of gabapentin on carrageenan-induced cytokine production in peritonitis. a The level of interleukin (IL)-1β and bTNF-α. The level of IL-1β or
TNF-α in the peritoneal cavity was measured 4 h after carrageenan injection. Mice were intraperitoneally administered with GBP (1 mg/kg) or indomethacin
(INDO; 10 mg/kg), followed by injection of 250 μL carrageenan (500 μg per cavity, i.p.) after 1 h. Each point represents the mean ± SEM values obtained
from five animals. *p<0.05 compared with carrageenan group; #p<0.05 compared with saline group. Statistical analysis was carried out using one-way
analysis of variance followed by the Newman-Keuls post hoc test.
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involves the inhibition of neutrophil migration into the
inflammatory site.

The carrageenan-induced peritonitis has been
linked to the neutrophil infiltration, the release of

neutrophil-derived mediators [27], and this phenome-
non occurs through an indirect mechanism that
involves the activation of resident cells and the re-
lease of proinflammatory cytokines [39]. In the

Fig. 4. Anti-inflammatory effect of gabapentin carrageenan-induced peritonitis in mice. a Total count of leukocytes. b Count of neutrophils per cavity. Mice
received 250 μL saline (i.p.), indomethacin (INDO; 10 mg/kg, p.o.), or gabapentin (GBP; 1 mg/kg, p.o.), followed by injection of 500μg carrageenan diluted
in 250-μL saline solution (i.p.) after 1 h. Mice were killed 4 h later, and the peritoneal cavity was washed with 1.5 mL heparinized phosphate-buffered saline
(PBS) to harvest the peritoneal cells. The values are represented as mean ± SEM. *p<0.05 compared to carrageenan group; #p<0.05 compared with saline
group. Statistical analysis was performed by analysis of variance followed by the Newman-Keuls post hoc test.

1833Gabapentin Reverses Inflammation and Oxidative Stress



present study, we showed that GBP (1 mg/kg) dimin-
ished the carrageenan-induced neutrophil migration
into the peritoneal cavity. According to our findings,

we can infer that this compound decreased inflam-
matory response by inhibiting the action and release
of cytokines such as IL-1β and TNF-α.

Fig. 5. Effect of gabapentin on MDA levels in the peritoneal exudate of mice. MDA levels in the peritoneal exudate were evaluated 4 h after carrageenan
administration. Values are expressed as mean±EPM in nanomole per milliliter of MDA *p<0.05 compared to carrageenan group; #p<0.05 compared to
saline group. Statistical analysis was performed using analysis of variance followed by the Newman-Keuls test.

Fig. 6. Effect of gabapentin on GSH levels in peritoneal exudate of mice. The animals were killed 4 h after induction by carrageenan peritonitis. One hour
before the experiment, they were pretreated with GBP (1 mg/kg). Values are expressed as mean ± EPM in microgram NPSH/gram of tissue. *p<0.05 co-
mpared to carrageenan group; #p<0.05 compared to saline group. Statistical analysis was performed using analysis of variance followed by the Newman-
Keuls test.
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Recent studies have shown that administration of
carrageenan into the peritoneal cavity induces the
release of TNF-α and IL-1β [40]. IL-1β and TNF-
α are potent proinflammatory cytokines that have
multiple effects, including the activation of inflam-
matory cells, induction of several inflammatory pro-
teins, cytotoxicity, and neutrophil migration [41].
These cytokines have been recognized as a powerful
chemotactic factor that activates the inflammatory
cells, such as mature neutrophils, and induces the
diapedesis to the inflammatory site [42]. GBP also
inhibited the levels of IL-1β and TNF-α, and based
on our results, we could infer that the anti-inflamma-
tory action of this anti-convulsant drug might occur
through the inhibition of cytokines involved in car-
rageenan-induced peritonitis.

Oxidative stress has been proposed to play an impor-
tant role in the pathogenesis of inflammatory process and is
related to promote the production of several cytokines,
including proinflammatory cytokines IL-1β, IL-6, and
TNF-α [43, 44] and the recruitment of neutrophils during
inflammatory process. This pathological event is charac-
terized by the overproduction of reactive oxygen resulting
in tissue damage [44]. Thus, the present study also inves-
tigated the effect of GBP on two oxidative stress markers:
GSH and MDA.

Our results demonstrated that GBP increased the lev-
els of GSH and decreased the MDA concentration in mice
carrageenan-induced peritonitis. GSH, an endogenous an-
ti-oxidant, protects the cells against oxidative stress, keep-
ing the sulfhydryl groups of proteins reduced and prevent-
ing them from reacting with free radicals [45] MDA is a
product of lipoperoxidative processes that take place as a
consequence of the tissue oxidative insult [46]. According
to that result, we can infer that GBP decreased the tissue
damage during the installation of the inflammatory process
by stimulating the production and action of endogenous
anti-oxidants and decreased the lipid peroxidation into the
peritoneal cavity.

CONCLUSION

In summary, our results may show that GBP has an
anti-inflammatory action to reduce the inflammatory re-
sponse by inhibiting the action of various inflammatory
mediators, neutrophil infiltration, proinflammatory cyto-
kines, and oxidative stress. These observations raise the
possibility that GBP could be used to improve tissue resis-
tance to damage during inflammatory conditions.
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