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RESUMO

Propomos um algoritmo expĺıcito de duas fases para resolver Problemas de Equiĺıbrio em
Espaços Euclidianos. A idéia é executar, a cada iteração, reflexões relativas a hiperplanos
e uma projeção sobre um semi-espaço. A convergência da sequência gerada é provada sob
hipóteses existentes na literatura. Experimentos numéricos são relatados.

PALAVRAS CHAVE. Problema de Equiĺıbrio, Operador de Reflexão, Métodos de Projeção,
Programação Matemática.

ABSTRACT

We propose an explicit two-phase algorithm for solving Equilibrium problems in Euclidean
spaces. The idea is perform, at each iteration, reflections related to hyperplanes and a
projection onto a halfspace. The convergence of the generated sequence is proved under
assumptions considered in the literature. Numerical experiments are reported.

KEYWORDS. Equilibrium problem, Reflection operator, projection methods, Mathe-
matical programming.
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1. Introduction
Let Rn be an Euclidean space with inner product 〈·, ·〉 and define ‖x‖ := 〈x, x〉

1
2 , for

all x ∈ Rn. Let C be a nonempty closed convex subset of Rn and f : Rn × Rn −→ R a
bifunction such that f(x, x) = 0 for all x. We consider the following Equilibrium problem
EP(f, C):

(EP )

{
Find x∗ ∈ C such that
f(x∗, y) ≥ 0 ∀ y ∈ C. (1)

The solution set of EP(f, C) is denoted by S(f, C).
Formulation (1) provides a unified framework for several problems in the sense that it
includes, as particular cases, optimization problems, Nash equilibria problems, comple-
mentarity problems, fixed point problems, variational inequalities and vector minimization
problems; see, for example, Blum and Oettli (1994). Numerical algorithms for solving
the equilibrium problem have been proposed based on the auxiliary problem principle, the
proximal point technique and projections onto the original set or onto approximations;
see for instance Iusem and Sosa (2010), Konnov (2003), Nguyen et al (2009), Quoc and
Muu (2010), Lyashko et al (2011), Santos and Scheimberg (2011a), Santos and Scheimberg
(2011b) and the references therein.

In this paper we assume the usual condition that the function, f(x, ·) : Rn → R, is
convex for all x ∈ Rn and we consider the case in which C is of the form:

C = {x ∈ Rn : g(x) ≤ 0}, (2)

where g : Rn → R is a nonlinear convex function. Differentiability of g is not assumed and
the representation (2) is therefore rather general, because any finite system of inequalities
gj(x) ≤ 0 with j ∈ J , where all the gj ’s are convex, may be represented as in (2) with
g(x) = sup{gj(x) : j ∈ J}. This representation for the feasible set has been widely used
in the literature; see Fukushima (1986), Censor and Gibali (2008), Bello Cruz and Iusem
(2010b). Furthermore, it is well known that any closed convex set C can be represented by
(2) for an appropriate convex function g.

Our objective is to develop an iterative algorithm for solving (1)-(2), such that each
iteration consists, essentially, of two phases. In the first phase (inner loop), starting from
an infeasible point xk−1, a movement towards feasibility is performed by using reflections
related to hyperplanes, obtaining a point zk. In the second phase, an approximation to
a solution of the problem is improved by considering a projected-type subgradient step,
generating a point xk. The projection is done onto a suitable half-space containing the
solution set. Actually, the method generates a feasible sequence {zk}, and a sequence {xk}
containing infeasible points. It is an implementable method with low computational cost
since only closed formulae are calculated.

The inner loop was given in Konnov (1998) embedded in a projection method for vari-
ational inequalities. We prove that the whole sequences generated by the algorithm are
convergent to a solution of the problem, under the standard assumptions of pseudomono-
tonicity of the bifunction, upper semicontinuity of the function f(·, y), the boundedness
of the subgradient of the function f(x, ·) at x on bounded sets, existence of solutions and
satisfying a condition of weak paramonotonicity type.

The rest of this paper is organized as follows. In Section 2 we present some theoretical
results needed in our analysis. In Section 3 we state our algorithm formally. In Subsection
3.1 we present an inner loop, called Algorithm IA which finishes after a finite number of
iterations. In Subsection 3.2 we introduce the global algorithm and in Subsection 3.3 we
establish the convergence properties of the algorithm. Finally, in Section 4, we illustrate
the behavior of the method by a numerical experiments.
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2. Preliminary results
In this section, we present some definitions and results, needed in the convergence

analysis of the proposed method.
First, we state two well known properties of orthogonal projections. We recall that, given a
nonempty closed and convex subset C of Rn, the orthogonal projection of x ∈ Rn onto C,
denoted by PC(x), is the unique point in C, such that ‖PC(x)− y‖ ≤ ‖x− y‖ for all y ∈ C.

Lemma 1 (Lemma 1, Solodov and Svaiter (2000)) Let C be a nonempty closed and
convex set in Rn. For all x, y ∈ Rn and all z ∈ C, the following properties hold:

i) ‖PC(x)− PC(y)‖2 ≤ ‖x− y‖2 − ‖(PC(x)− x)− (PC(y)− y)‖2.

ii) 〈x− PC(x), z − PC(x)〉 ≤ 0.

Lemma 2 (Proposition 3.1, Qu and Xiu (2008)) Let g : Rn → R be a convex func-
tion. Given x ∈ Rn and v ∈ ∂g(x), let C(x, v) := {z ∈ Rn : g(x) + 〈v, z − x〉 ≤ 0}. Then
for any y ∈ Rn:

PC(x,v)(y) =

 y − g(x) + 〈v, y − x〉
‖v‖2

v if y /∈ C(x, v)

y if y ∈ C(x, v).

Observe that when C is given by (2), C ⊆ C(x, v) for all x ∈ Rn.
Let us recall that, the projection of a point y ∈ Rn onto the hyperplane H(x, v) = {z ∈
Rn : g(x) + 〈v, z−x〉 = 0} is given by PH(x,v)(y) = y− 1

‖v‖2
[g(x) + 〈v, y−x〉 ]v. It follows

PH(x,v)(x) = x− 1

‖v‖2
g(x)v. (3)

For S ⊆ Rn, the distance function dist(·, S) is defined by dist(x, S) := infz∈S ‖z − x‖. If S
is a closed and convex set then dist(x, S) = minz∈S ‖z − x‖ = ‖PS(x)− x‖.
Next, we establish four technical and elementary results to be used in the convergence
analysis.

Lemma 3 Let {αk}, {βk} be sequences of real numbers satisfying {βk} ⊂ [0,+∞) and∑∞
k=0 βk = +∞. Suppose that

∞∑
k=0

αkβk < +∞, then, lim infk→+∞ αk ≤ 0.

Lemma 4 Let {νk} and {δk} be nonnegative sequences of real numbers satisfying νk+1 ≤
νk + δk with

∑+∞
k=1 δk < +∞. Then the sequence {νk} is convergent.

From now on, we consider a bifunction f : Rn×Rn → R such that f(x, x) = 0 for all x ∈ Rn
and f(x, ·) : Rn → R is convex. The following subdifferential notion for bifunctions studied
in Iusem (2011) will be a useful tool in our development.

Definition 1 The diagonal subdifferential ∂2f : Rn → P(Rn) of a bifunction f at x ∈ Rn,
is given by

∂2f(x, x) := {u ∈ Rn : f(x, y) ≥ 〈u, y − x〉+ f(x, x) ∀ y ∈ Rn}
= {u ∈ Rn : f(x, y) ≥ 〈u, y − x〉 ∀ y ∈ Rn}. (4)
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The elements of the diagonal subdifferential are called diagonal subgradients; see, for ex-
ample, Santos and Scheimberg (2011b) and the references therein.

3. An explicit reflection-projection algorithm
In this section, we examine an inner procedure for finding a feasible point by considering

reflections related to hyperplanes. Also, we introduce an algorithm for solving EP(f, C)
which uses the inner procedure and projections onto half-spaces.
From now on, we assume the following assumption.

(A1) There is a Slater point of g, i.e. a point w ∈ Rn such that g(w) < 0.

We consider that an oracle is available, which for any given x ∈ Rn computes the
subgradient for the function g (or a diagonal subgradient of f), i.e., some v ∈ ∂g(x) (or
u ∈ ∂2f(x, x)). As usual in nonsmooth optimization Karas et al (2009), we do not assume
that there is any control over which particular subgradients are computed by the oracle.

Remark 1 Condition (A1) is a standard constraint qualification, see for instance Konnov
(2003) for Equilibrium problems and Bello Cruz and Iusem (2010b), Karas et al (2009),
Nedić and Ozdaglar (2009) for related problems.

Algorithm IA
Data: x ∈ Rn.
Output : y ∈ C.
Step 0: If g(x) ≤ 0 set y = x , stop. Otherwise, set y0 = x, j := 0.
Step 1: take sj ∈ ∂g(yj). Calculate

yj+1 := yj − 2

‖sj‖2
g(yj)sj , j := j + 1. (5)

Step 2: If

g(yj) ≤ 0 take j(y) = j, y = yj , stop. (6)

Otherwise, go back to step 1.
Observe that d(yj , Hj) = d(yj+1, Hj) where d(y,Hj) = minz∈Hj ‖y − z‖ and the hy-

perplane Hj = {z ∈ Rn : g(yj)+ < sj , z − yj >} = 0 separetes yj from S(f, C).
We summarize the properties of Algorithm IA, which has j(y) and yj(y) as output.

Proposition 1 Let {yj} be defined by the inner algorithm where the initial point y0 verifies
g(y0) > 0. Then,

i) ‖yj+1 − y‖ ≤ ‖yj − y‖ ∀ y ∈ C.

ii) The algorithm generates a finite number of iterations.

Proof:

i) See Lemma 9 in Konnov (1998).

ii) See Lemma 10 in Konnov (1998).
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�
3.2. The Algorithm

Take a positive parameter ρ and real sequences {ρk}, {λk} and {βk} verifying the
following conditions:

ρk > ρ, βk > 0, λk ∈ (0, 1] ∀ k ∈ N. (7)

∞∑
k=0

λk βk
ρk

= +∞,
∞∑
k=0

β2k < +∞. (8)

Algorithm DPA

Step 0: Choose x0 ∈ Rn. Set k := 0.

Step 1: Let xk ∈ Rn. If g(xk) ≤ 0 then zk := xk

Otherwise apply Algorithm IA with x = xk. Set j(k) = j(y), zk = yj(k).

Step 2: Given zk, take vk ∈ ∂g(zk), uk ∈ ∂2f(zk, zk) and let

Ck:= C(zk, vk) = {y ∈ Rn : g(zk) + 〈vk, y − zk〉 ≤ 0}.

Calculate ηk := max{ρk, ‖uk‖}, and

xk+1 := (1− λk)zk + λkPCk

(
zk − βk

ηk
uk
)
. (9)

Step 3: If xk+1 = zk, stop. Otherwise, k := k + 1 and go back to Step 1.

Next we show that the cost of the projection in (9) is negligible.

Lemma 5 Assume that condition (A1) is satisfied. Then the iterate xk+1 has the following
explicit formulae

xk+1 = (1− λk)zk + λkPCk

(
zk − βk

ηk
uk
)

= zk − λk

(
βk
ηk
uk +

1

‖vk‖2
max

{
0, g(zk)− βk

ηk
〈uk, vk〉

}
vk

)
.

Proof: Follows directly from Lemma 2. �

3.3. Convergence analysis of Algorithm DPA
We begin the convergence analysis of the algorithm by studying the case where the

sequence is finite.

Proposition 2 Assume that (A1) holds. Let {xk} and {zk} be the sequences generated by
Algorithm DPA. If xk+1 = zk, then, xk+1 is a solution of EP(f, C).

Proof: Let xk+1 be the last term of {xk}. Suppose that xk+1 = zk. From (9) and λk > 0,
we get that

zk = PCk

(
zk − βk

ηk
uk
)
.

Thus, by Lemma 1(ii), we have

zk ∈ Ck and
βk
ηk

〈
uk, z − zk

〉
≥ 0 ∀z ∈ Ck. (10)
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Since zk ∈ C ⊆ Ck and
βk
ηk
> 0 for all k, by (10), we get

〈uk, z − zk〉 ≥ 0 ∀ z ∈ C.

Therefore, from uk ∈ ∂2f(zk, zk), and (4) we deduce that

f(zk, z) ≥ 〈uk, z − zk〉 ≥ 0 ∀ z ∈ C.

Hence, we conclude that xk+1 = zk ∈ S(f, C). �
From now on we assume that the sequences {xk} and {zk} generated by Algorithm DPA

infinite.
We present two results that are needed for the convergence analysis of Algorithm DPA.

Proposition 3 Assume that (A1) is satisfied. Then, it holds:

i) limk→+∞ ‖xk+1 − zk‖ = 0,

ii) limk→+∞ dist(xk, C) = 0,

iii) all weak cluster points of {xk} belong to C.

Proof:

i) It follows from (7), (9) and (6) that

‖xk+1 − zk‖2 = λk‖PCk
(zk − βk

ηk
uk)− zk‖2

= ‖PCk
(zk − βk

ηk
uk)− PCk

(zk)‖2.

Therefore, combining the above inequality and Lemma 1, it results

‖xk+1 − zk‖2 ≤ βkη
−1
k

∥∥uk∥∥
≤ βk.

The conclusion now follows from (i) and (8).

ii) This result follows from (i).

iii) This conclusion is an immediate consequence of (ii).

�

Lemma 6 Assume that (A1) is satisfied. Then, for any x ∈ C and for all k ∈ N, it holds:

i) ‖zk − x‖ ≤ ‖xk − x‖.

ii) ‖xk+1 − x‖2 ≤ ‖zk − x‖2 + β2k +
2λkβk
ηk
〈uk, x− zk〉.

Proof: Let x ∈ C and k ∈ N.

i) If g(xk) ≤ 0 then the conclusion is trivial.

Otherwise, from Proposition 1(ii), we have

‖zk − x‖ = ‖yj(k) − x‖
≤ ‖yj(k)−1 − x‖ ≤ . . . ≤ ‖y0 − x‖
= ‖xk − x‖.
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ii) Recalling that 0 < λk ≤ 1, ηk = max{ρk, ‖uk‖} and ρk > ρ > 0, we have that

‖uk‖
ηk
≤ 1 and

λk
ηk
≤ 1

ρ
. (11)

By Lemma 1(i), the above inequalities and taking x = (1− λk)x+ λkPCk
(x), we get

‖xk+1 − x‖2 ≤ (1− λk)‖zk − x‖2 + λk‖PCk
(zk − βk

ηk
uk)− PCk

(x)‖2

≤ (1− λk)‖zk − x‖2 + λk

∥∥∥zk − βk
ηk
uk − x

∥∥∥2
= (1− λk)‖zk − x‖2 + λk‖zk − x‖2 + λk

‖uk‖2

η2k
β2k +

2λkβk
ηk

〈uk, x− zk〉

≤ ‖zk − x‖2 + β2k +
2λkβk
ηk

〈uk, x− zk〉.

�

The following assumptions allows us to establish the boundedness of the sequences, {zk}
and {xk}, generated by Algorithm DPA.

(A2) The solution set S(f, C) is nonempty.

(A3) f is a pseudomonotone bifunction.

Proposition 4 Assume that (A1)-(A3) are satisfied. Then,

(i) the sequences {‖xk − x‖} and {‖zk − x‖} are convergent, for all x ∈ S(f, C),

(ii) the sequences {‖xk‖} and {‖zk‖} are bounded.

Proof:

i) Let x ∈ S(f, C). By Lemma 6, we have that

‖zk+1 − x‖2 ≤ ‖xk+1 − x‖2

≤ ‖zk − x‖2 + β2k + 2
λkβk
ηk
〈uk, x− zk〉

≤ ‖xk − x‖2 + β2k + 2
λkβk
ηk
〈uk, x− zk〉. (12)

Since x̄ ∈ S(f, C), we have f(x̄, zk) ≥ 0. Therefore, by (A3) and the definition of
uk ∈ ∂2f(zk, zk) we deduce that

〈uk, x̄− zk〉 ≤ f(zk, x̄)

≤ 0.

By the above inequality and (12), we have that

‖zk+1 − x‖2 ≤ ‖zk − x‖2 + β2k,

which together with Lemma 6(i), it results

‖xk+1 − x‖2 ≤ ‖xk − x‖2 + β2k.

Our conclusion follows from Lemma 4.
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ii) This result follows from (i). �

We establish the convergence of the whole sequence {zk} to a solution of the equilibrium
problem under the following conditions.

(A4) ∂2f is bounded on bounded sets.

(A5) f(·, z) is an upper semicontinuous for every z ∈ Rn.

(A6) Let x∗ ∈ S(f, C) and x̄ ∈ C. If f(x̄, x∗) = f(x∗, x̄) = 0 then x̄ ∈ S(f, C).

Proposition 5 Assume that (A1)-(A4) hold. Then,

lim sup
k→+∞

f(zk, x̄) = 0 ∀ x̄ ∈ S(f, C).

Proof: Let x̄ ∈ S(f, C). Then, by Lemma 6, we have

‖zk+1 − x‖2 ≤ ‖zk − x‖2 + β2k +
2λkβk
ηk

f(zk, x̄), (13)

that is,
2λkβk
ηk

[−f(zk, x̄)] ≤ ‖zk − x‖2 − ‖zk+1 − x‖2 + β2k.

Therefore, it results that

2
m∑
k=0

λkβk
ηk

[−f(zk, x̄)] ≤ ‖z0 − x‖2 − ‖zm+1 − x‖2 +
m∑
k=0

β2k

≤ ‖z0 − x‖2 +
m∑
k=0

β2k.

(14)

Hence, by using (14) we obtain

+∞∑
k=0

λkβk
ηk

[−f(xk, x̄)] < +∞. (15)

On the other hand, (A4) and Proposition 4 imply that {‖uk‖} is bounded.
Therefore, there exists L ≥ ρ such that

∥∥uk∥∥ ≤ L for all k ∈ N, so it results

ηk
ρk

= max{1, ρ−1k ‖u
k‖} ≤ L

ρ
∀ k ∈ N.

Consequently, we have
λkβk
ηk
≥ ρ

L

λkβk
ρk

,

which together with (8) implies that

∞∑
k=0

λkβk
ηk

= +∞.

Using the above inequalities and Lemma 3, we conclude that

lim inf
k→+∞

[−f(zk, x̄)] ≤ 0,

that is,
lim sup
k→+∞

f(zk, x̄) ≥ 0.

�
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Theorem 1 Assume that (A1)-(A6) hold. Then, the whole sequence {xk} converges to a
solution of the equilibrium problem.

Proof: Let x∗ ∈ S(f, C), by Proposition 5 there exists a subsequence {xkj} of {xk} such
that

lim sup
k→+∞

f(xk, x∗) = lim
j→+∞

f(xkj , x∗). (16)

In view of Proposition 4, {xkj} is bounded. So, there is x̄ ∈ C and a subsequence of {xkj},
without loss of generality, namely {xkj}, such that

lim
j→+∞

xkj = x̄. (17)

Combining assumption (A5) together with Proposition 5 it follows

f(x, x∗) ≥ lim supj→+∞ f(xkj , x∗)

= limj→+∞ f(xkj , x∗)
= lim supk→+∞ f(xk, x∗)
= 0.

(18)

From assumption (A3) we have f(x, x∗) ≤ 0, so, it results

f(x, x∗) = 0. (19)

Therefore, (A6) implies that x ∈ S(f, C).
Using again Proposition 4 we obtain that the sequence {‖xk − x̄‖} is convergent, which

together with (17) it yields

lim
k→+∞

xk = x̄, x̄ ∈ S(f, C).

�

Remark 2 Condition (A4) has been considered in Santos and Scheimberg (2011b), Iusem
and Sosa (2003) for equilibrium problems, in Bello Cruz and Iusem (2010a) for variational
inequalities, and in Alber et al (1998), Polyak (1969) for optimization problems. This
condition is satisfied, for exemple, if f is a monotone bifunction.

We illustrate all the assumptions by the following example.

Example 1 We consider the equilibrium problem defined by C = [−1, 1] and f(x, y) =
|x|(y−x). Let us observe that S(f, C) = {−1, 0} is solution set of EP (f, C) and (A1)-(A5)
hold.

4. Numerical results
In this section we illustrate the behavior of the algorithm DPA by considering two

numerical tests coded in SCILAB 5.3.2 on a 2GB RAM Intel Atom N450.

Example 2 Consider a general equilibrium problem given in Bao et al (2005) and defined
by C = {(x1, x2, x3, x4) ∈ R4 : g(x) = maxi=1,2,3,4{gi(x)} ≤ 0}, with g1(x) = x21 − x2 − 1,
g2(x) = x23−x4−1, g3(x) = 2x1+x2−3, g4(x) = 2x3+x4−3 and f(x, y) =

∑4
j=1 φj(x)(yj−

xj) where

φ1(x) = x1 − 2x2
φ2(x) = −2x1 + 4x2
φ3(x) = x3 − 2x4
φ4(x) = −2x3 + 4x4

The solution point for this problem is x = (1.2, 0.6, 1.2, 0.6). Let us observe that the deriva-
tive of f(x, ·) with respect to y, at x, is ∂2f(x, x) = (φ1(x), φ2(x), φ3(x), φ4(x)).
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The algorithms start from x0 = (100, 100, 100, 100). For Algorithm DPA, we set λk = k
k+1

and βk = 72
10k . For the Extragradient Algorithms, we consider the same Bregman func-

tion, given by G(x) = 1
2‖x‖

2, like in Tran et al (2008). We take ρ = 0.2 for EA1
and ρ = 0.6 for EA2, α = ρ

10 , θ = 0.9, which are the best choice of the parame-
ters ρ ∈ {0.1, 0.2, . . . , 2} and θ ∈ {0.1, 0.2, . . . , 0.9}. For IPSM, we take βk = 73

10k and
γk = max{3.3, ‖(φ1(xk), φ2(xk), φ3(xk), φ4(xk))‖}. Table 1 shows the performance of the
algorithms.

Table 1: Comparison of DPA with others algorithms
Algorithm Iterations Inner loops cpu(s)

DPA 10 36 0.318
IPSM 13 2 1.956
EA1 2 4 4.526
EA2 8 46 11.602

Note that in terms of cpu time Algorithm DPA takes advantage on the others algorithms.

Example 3 We Consider the Rosen-Suzuki optimization problem taken from Problem 43
of Hock and Schittkowski (1981) and its reformulation as an equilibrium problem. The
bifunction is given by f(x, y) = φ(y)− φ(x) with

φ(x) = x21 + x22 + 2x23 + x24 − 5x1 − 5x2 − 21x3 + 7x4.

Hence, fy(x, x) = (2x1 − 5, 2x2 − 5, 4x3 − 21, 2x4 + 7)T .
The constraint set is defined by C =

{
x ∈ R4 : gi(x) ≤ 0, i = 1, 2, 3

}
, where

g1(x) = x21 + x22 + x23 + x24 + x1 − x2 + x3 − x4 − 8,
g2(x) = x21 + 2x22 + x23 + 2x24 − x1 − x4 − 10,
g3(x) = 2x21 + x22 + x23 + 2x1 − x2 − x4 − 5.

The optimal point is x = (0, 1, 2,−1).

Figure 1 gives the evolution of the term ‖xk − x∗‖ along of 50 iterations, by considering
the median of five randomly generated starting points x0 ∈ R4. We set λk = k

k+1 and

βk = 347
100k .

Figure 1: Evolution of ‖xk − x∗‖ along of 50 iterations
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5. Conclusion
We analyzed an explicit two-phase algorithm for solving Equilibrium problems in Eu-

clidean spaces. In the first phase, a reflection step is performed. Secondly, a projection onto
a halfspace is calculated. Hence, it is an implementable method with low computational
cost since only closed formulae are computed. The convergence of the generated sequence
is proved under mild assumptions. To illustrate the numerical behavior of the algorithm,
two examples are reported.
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