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ABSTRACT 

This paper is about the relationship between dissolved gases and the quality of the 
insulating mineral oil used in power transformers. Artificial Neural Networks are 
used to approach operational conditions assessment issue of the insulating oil in 
power transformers, which is characterized by a non-linear dynamic behavior. The 
operation conditions and integrity of a power transformer can be inferred by 
analysis of physicochemical and chromatographic (DGA – Dissolved Gas Analysis) 
profiles of the isolating oil, which allow establishing procedures for operating and 
maintaining the equipment. However, while the costs of physicochemical tests are 
less expensive, the chromatographic analysis is more informative and reliable. This 
work presents a method that can be used to extract chromatographic information 
using physicochemical analysis through Artificial Neural Networks. It´s believed 
that, the power utilities could improve reliability in the prediction of incipient 
failures at a lower cost with this method. The results show this strategy might be 
promising. The purpose of this work is the direct implementation of the diagnosis of 
incipient faults through the use of physicochemical properties without the need to 
make an oil chromatography. 

   Index Terms  — Dielectric measurements, oil insulation, power transformers, neural 
networks. 

 
1   INTRODUCTION 

 POWER transformers are devices, technically and 
economically, essential in a transmission and distribution 
electric plant. It is essential to ensure its continuous 
operation and prevent possible failures that may occur 
because of their natural life cycle or electrical arrangement 
that are submitted [1-5]. 

For technical reasons associated with the natural aging 
of the equipment installed in an electrical system comes the 
need to increase performance and reliability in inferior 
conditions at the time of start-up, and establishing higher 
levels of quality and technical service. This requires an 
environment that resembles the real conditions of operation 
of this type of equipment. The operating conditions and 

integrity of a power transformer can be drawn from the 
analysis of its insulating oil. It is known that a set of 
analysis defined by technical standards provides diagnosis 
for probable fault conditions of the transformer [6, 7]. 

The insulating oil is widely used in electrical equipment 
performing, essentially, the role of an insulating and cooling 
medium. The electric insulation prevents the formation of the 
voltaic arc and promotes its extinction, while the generation of 
convective currents provides an effective process to remove the 
heat produced inside the equipment to the external environment. 

The most widely studied diagnostic methods that are 
used to identify incipient faults in power transformers are: 
i) physicochemical evaluation, which determines the oil 
integrity; ii) chromatographic analysis that checks possible 
equipment failure. From these two types of analysis were 
defined standards and procedures for operation and 
maintenance of oil insulated equipment [1, 8, 9, 10, 11]. Manuscript received on31 June 2011, in final form 4 October 2011. 
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The dielectric quality of the transformer insulating oil, 
and the incipient failures of thermal and electrical type of 
this equipment, can be determined from physicochemical 
and chromatograph tests [6, 7, 10, 12]. These tests are 
important to keep the integrity of the transformers. In the 
meantime, while the costs of the physicochemical tests are 
lower and simpler, the chromatograph one is more 
informative [1, 2, 13]. There are, in the technical literature, 
papers that point to the correlation between these two types 
of tests [1, 10, 14, 15]. 

The uses of these tests are the basis for developing a 
good maintenance plan with capability to anticipate failures 
while these are still incipient. Although there are a 
considerable number of development tools for monitoring 
and diagnosing the condition of power transformers, this 
issues presents continuous challenges [1, 15, 16, 17]. 

Added to this, when temperature and load are 
monitored it is possible an integrated view of the efforts to 
which the power transformer is submitted. According some 
authors, with these integrations is possible to use strategies 
to predict lifetime and operations planning [18 19, 20, 21]. 

However, it is a fact that a direct temperature monitoring 
of the transformers windings is commonly a costly intrusive 
process. In many cases, it is necessary to shutdown the 
equipment and therefore interrupting the power service. On 
the other hand, the use of DGA – Dissolved Gas Analysis to 
evaluate the current transformer conditions is a non-intrusive 
method and technically more cheap. The oil sample used in 
DGA could be taken without power service interruption.  

It is noteworthy that the average lifetime of such 
equipment ranges from 30 to 40 years. It is therefore 
essential the use of maintenance techniques that protect 
such important and high value investment. 

The methods of diagnosis based on DGA are the most 
studied and most applied to power transformers immersed 
in oil. These methods are based on the analysis of the 
concentration and rate of gases production generated and 
dissolved in transformer oil, and associates the kind of 
failure with the presence of these gases. For example, 
electrical discharges lead to the generation of acetylene 
while the presence of carbon dioxide is associated with 
overheating of the cellulose. Conventional methods of 
DGA have been employed for over thirty years as a 
successful technique that, coupled with recent technologies, 
gains new momentum every year. The use of these methods 
for followed decades led to a deep knowledge base to 
characterize the balance of gases inside the transformers. It 
is observed that the level and period of formation of gases 
depends not only on the age of the transformers but also of 
the location, nature and severity of failures that are 
submitted [1, 6, 7, 15, 16, 17]. 

This article aims to develop a methodology to explore 
the co-relation between the concentrations of dissolved 
gases in insulating oil (normally obtained by 
chromatograph test) and the physicochemical 
characteristics of the oil sample. This proposed method 
brings economic reduction in the information extractions 
relevant to foresee incipient failures of transformers. 

Taking advantage of the consolidated knowledge base that 
grew historically around DGA analyses, including several 
industrial standards. The ability to predict gases 
concentrations based on much cheaper physicochemical 
methods allows the use of the established DGA standards to 
infer transformer operating conditions [1, 2, 6, 7, 23, 25]. 

The relation between the physicochemical measures and the 
gases concentration is set in this paper through Artificial Neural 
Networks (ANN) which, by examples, learns how to build 
linear or non-linear mappings, considered universal 
approximators. Artificial Neural Networks (ANN) has been 
successfully employed in modeling and system identification of 
complex nature [1, 2]. Techniques that involve the application of 
different architectures of ANN (Multi-Layer Perceptron, Radial-
Basis Function, Self-Organizing Maps, among others) have 
been proposed successfully for the detection of incipient faults 
in power transformers [1, 22, 23, 24]. 

  

2  ANALYSIS OF INSULATING OIL 
The gas formation in a liquid insulation cannot be 

prevented, even with the most effective chemical additives. 
The oil and cellulose oxidation and cracking is an 
unavoidable spontaneous natural process inside an 
operational power transformer, due to the simple fact that 
its internal temperature rises when turned on. Most 
transformers are cooled by plain fins external structures, 
and some may reach about 200°C in a sunny day, which is 
quite hot.  There is no way to fully stabilize oil molecules 
or cellulose fiber at this situation and the subsequent 
reducing chain reactions will take place no matter what. 

Some researches look for associating the abnormal 
dielectrics characteristics of the oil to the occurrence of 
internal failures [1, 10, 14, 15]. These abnormalities can be 
related to the presence of free radicals and of oxygen 
dissolved under copper catalytic effect, starting the process of 
oil degradation in the measure of its aging [3, 4, 5, 8, 14]. 

Regarding the most regularly used tests for insulating 
oil, there is emphasis on the DGA and the physicochemical 
properties. DGA provides the discovery of internal failures 
still in early stage. This information allows taking measures 
in order to attenuate the cause or even the replacement of 
the unit in the imminence of failure, in order to prevent the 
effectiveness of fault. The analysis of the physicochemical 
features yields data to assess the oil. The evaluation report 
extracted from the reference standards can categorize the 
analyzed oil, which may require the immediate oil 
replacement in case of deteriorated properties.  

Despite the importance of information from these two 
tests and the applicability of functional relation between 
them, such relationships are not well defined in literature.  

However, some studies mention the influence of 
dielectric oil in the abnormal appearance of internal faults. 
Such abnormalities may be related to the presence of free 
radicals and dissolved oxygen under the catalytic effect of 
copper, known as trigger for the degradation process of oil 
under aging [14].  
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Some studies show that, as the operating time of 
insulating oil increases, the rate of failure occurrence raises 
significantly [15]. 

Tests with spectroscopy dielectric methods present co-
relation between the aging of oil and the loss factor (tan δ). 
Samples with degraded physicochemical properties were 
shown to have a loss factor dependent on temperature, 
according to the Figure 1 [10]. 

Studies of [25], demonstrate that the oil conductivity 
maintain ascendant relation with the temperature. Conductivity 
is a complementary parameter to Breakdown Voltage. 

It is known that the mechanism of gases formation 
inside transformers follows a thermodynamic model that 
associates the reaction rate of gases formation to the 
temperature near the failure spot [6, 7].  

For the very specific case of a power transformer, there is 
no source of high frequency light, such as ultraviolet or other 
ionizing radiation, which possibly could catalyze the 
production of free radicals. Therefore, provided that no one 
have installed the transformer nearby an x- or cosmic ray 
source, which is the real life situation, the dominant process 
for oil degradation in actually oil cracking. Eventually, some 
electric arc formation by isolation faults takes place, however 
the thermal degradation is the long-term mechanism always 
present when the equipment is in operation. Not only the oil 
suffers from thermal degradation, but also the cellulose does. 
Due to the importance of this oil /cellulose cracking and 
oxidation thermal process, there are so many studies 
regarding it in specialized literature [26-31] 

Despite the lack of application, physicochemical and 
chromatographic tests are run for decades, and consequently, 
there is a broad amount of reliable data on the characteristics 
of insulating oil. 

The most remarkable feature of an ANN is learning by 
example. The application of methods based on computational 
intelligence, like ANN, can provide satisfactory results 
concerning to insulation behavior of the transformer liquid 
[1]. Certainly, it is quite hard to forecast by direct human 
rationale the link between oil degradation products and the 
operating condition of a transformer. However, an artificial 
neural network (ANN) is a proven technique with advanced 
capabilities of pattern recognition. This is a fact, and if such 

hidden patterns exist, they could possibly be revealed by the 
ANN. 

The data in question are composed of contemporary 
samples of physicochemical and chromatographic analysis 
courtesy of a company generating electricity added to the 
data held by the Department of Electrical Engineering, 
Federal University of Ceará in a total of 357 samples. These 
samples are related to power transformers used at voltages 
between 230kV and 500kV, with manufacture date between 
1961 and 2008, with start-up date ranging between 1967 and 
2009. The data analyses used in the experiments have 
contemporary collection date between 1982 and 2009.  

3  ESTIMATION OF DISSOLVED GASES 
USING ONE ARTIFICIAL NEURAL 

NETWORK 

The results presented in [10] pointed clearly the 
physicochemical properties, which have noticeable influence 
in the quality of insulating oil.  
The Multi-Layer Perceptron (MLP) is generally considered 
the most powerful and universally applicable type of ANN. 
In the Figure 2 is shown a MLP-ANN with one hidden layer, 
input and output layers. There are n neurons (x1, ..., xn) in the 
input layer, h hidden neurons h (z1, ..., zh), and m neurons in 
the output layer (y1, ..., ym); wij is the weight of the 
connection between a neuron xi of the input layer and one 
neuron zj, and jk the weight of the connection between the 
neuron zj and the neuron yk. In this network are considered 
too, j as the value of the bias for the neuron zj of the hidden 
layer, and k as the bias for the output neuron yk. 

The input vector applied to the ANN is formed by the 
following components: 

1- Acidity, 
2- Breakdown Voltage, 
3- Water content, 
4- Interfacial tension, 
5- Density, 
6- Oil power factor. 

Figure 1.  Spectroscopy dielectric of aged insulating oil [8]. 
  

 

 
Figure 2. The Multi-Layer Perceptron ANN. 
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The estimation of the concentration of dissolved gases 
is obtained as the output of the neural network. The 
estimated gases concentrations can be taken as an indicator 
to infer the possibility of incipient failures in transformers 
[1, 2, 7, 9, 10, 13, 24]. Thus, the concentrations of the 
followed gases were estimated:  

1- Hydrogen (H2), 
2- Carbon Monoxide (CO), 
3- Carbon Dioxide (CO2), 
4- Methane (CH4), 
5- Ethane (C2H6), 
6- Ethylene (C2H4), 
7- Acetylene (C2H2).  
It was conceived a distinct ANN to each gas to be estimated 

with just one neuron of output. Therefore, the seven neural 
networks give the associative link between the input 
physicochemical measures and the concentration of dissolved 
gases in oil. 

The present work relies on a comprehensive base of about 
357 DGA chromatographic data sets, which was used in the 
development of correlations between the input and output 
variables, through the design of 7 different ANN-MLP. For the 
training process were used 60% of the data. For validate and test 
were separated 20% for each step, respectively. Data were 
normalized to encompass the minimum and maximum values in 
the range [-1, 1]. The training was designed with the method of 
Levemberg-Marquardt. The hidden neurons layer was set to 10 
neurons. For statistical effect, all the ANN were trained and 
tested in sets of 30 repetitions. 

As described in [6] and [7], measurements of dissolved 
gases in laboratories always provide some degree of 
imprecision. This imprecision alters the gas measures affecting 
the process of fault diagnosis.  

In [32] are cited researches about 25 laboratories with 
expertise in 15 different countries, representing the current 
practices around the world in order to quantify the imprecision 
of measurements. The average precision of the laboratories in 
the referred research for all gases is within ± 15% ± 30%. Based 
on this, it seems reasonable to consider a quantization window 
of tolerance for ANN output around these values of inaccuracy 
of the laboratories. 

At this point, it should be noted that the values of laboratory 
tests are expressed in parts of the gas per million parts of oil 
(p.p.m.) volumetrically and are based on a large power 
transformer, with several thousand gallons of oil. With a smaller 
volume of oil, the volume of the formed gas will result in a 
greater variation in the gas concentration. 

The diagnostic results based on inaccurate laboratory values 
can be misleading in some cases. When it is not possible deal 
with the random variability of the DGA data and its consequent 
ambiguity of the results of the diagnostic, the default values of 
accuracy based on international surveys can be used, like 
present in [32]. 

The results are presented in Tables 1 to 7 through the hit rate 
in the training and testing for each ANN dissolved gas estimator. 
Where hit rate is the comparative the value between the gas 

from the chromatography and the value estimated by the neural 
network, i.e. how close to the actual value is the prediction given 
by the neural network. The measures of minimum, maximum, 
average and standard deviation make possible evaluating the 
robustness of the estimates developed by neural networks. 

 
 

 
 

 
 

 
 

 
 

 
 

 

Table 7. Hit Percentage of Neural Networks to estimation of Carbon 
Monoxide. 

Hit Rate Carbon Monoxide Training (%) Test (%) 
Minimum 91.11 55.93 

Main 95.22 67.34 
Maximum 99.44 79.66 

Standard Deviation 1.93 5.75 

Table 6. Hit Percentage of Neural Networks to Estimation of Carbon 
Dioxide. 

Hit Rate Carbon Dioxide Training (%) Test (%) 
Minimum 82.58 63.79 

Main 85.28 73.97 
Maximum 88.76 84.48 

Standard Deviation 1.90 5.98 

Table 5. Hit Percentage of Neural Networks to Estimation of Methane. 

Hit Rate Methane Training (%) Test (%) 
Minimum 88.37 76.06 

Main 91.00 85.02 
Maximum 93.95 92.96 

Standard Deviation 1.56 4.23 

Table 4. Hit Percentage of Neural Networks to Estimation of Ethylene. 

Hit Rate Ethylene Training (%) Test (%) 
Minimum 86.51 78.87 

Main 89.74 84.41 
Maximum 93.95 92.96 

Standard Deviation 1.81 3.77 

Table 3. Hit Percentage of Neural Networks to Estimation of Ethane. 

Hit Rate Ethane Training (%) Test (%) 
Minimum 92.09 80.28 

Main 95.19 89.01 
Maximum 98.14 98.59 

Standard Deviation 1.65 4.44 

Table 2. Hit Percentage of Neural Networks to Estimation of Hydrogen. 

Hit Rate Hydrogen Training (%) Test (%) 
Minimum 97.21 94.37 

Main 97.86 87.65 
Maximum 98.14 100.00 

Standard Deviation 0.54 2.93 

Table 1. Hit Percentage of Neural Networks to Estimation of Acetylene. 

Hit Rate Acetylene Training (%) Test (%) 
Minimum 93.95 91.55 

Main 96.61 96.48 
Maximum 99.07 100.00 

Standard Deviation 1.52 2.42 
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4  DISSOLVED GAS INFLUENCE IN 
PHYSICOCHEMICAL PROPERTIES 

After training the ANN, it was used to obtain graphically 
the relation between the physicochemical properties and the 
dissolved gases concentrations Figures 3 to 9.  

For the construction of graphs displayed, using the neural 
networks developed, it was necessary to use considerations of 
ideals, because neural networks were designed with multiple 
inputs and one output. Thus, the entry of interest was varied 
within the universe of study while other inputs were kept 
within its limits considered normal. 

 
Figure 3.  Input x Output - ANN: Water Content x Acetylene. 

 
Figure 4.  Input x Output - ANN: Power Factor x Carbon Dioxide. 

 
Figure 5.  Input x Output - ANN: Water Content x Carbon Dioxide. 

 

 
 

Figure 6.  Input x Output - ANN: Breakdown Voltage x Hydrogen. 

 
Figure 7.  Input x Output – ANN: Acidity x Hydrogen. 

 
Figure 8.  Input x Output - ANN: Water Content x Methane. 

 

 
Figure 9.  Input x Output – ANN: Water Content x Carbon Monoxide. 
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It is observed the remarkable variation of characteristic of 
Water Content when there is generation of Carbon Monoxide, 
Carbon Dioxide, Methane and Acetylene, according to Figure 
9, Figure 5 and Figure 8, respectively. The first three refers to 
failures in low temperature or under condition of overheating 
in cellulose.  

Methane, according to [6] and [7], can be generated from a 
soft overheat on high temperatures coming from more severe 
failures. Therefore, the attribute value Water Content proves 
to be a good indication of decrease in insulating oil quality 
and, as a result, in probability presence of incipient failures in 
transformer.  

Regarded to Monoxide and Dioxide Carbon, in a 
circumstance where the cellulose is submitted to an extreme 
high temperature, as electric arcs, the generation of carbon 
monoxide (CO) gets raised very fast in comparison to the 
production of carbon dioxide (CO2). But, in a situation of little 
overload or ventilation restrictions, where significant heat 
generation takes place, the CO2 increases more quickly than 
CO, therefore the rate of CO/CO2 presents the values from 
1:20 to 1:10. This justifies the appearance of curves being 
opposite in Figures 9 and 5 in relation to Water Content. 

The relation of Water Content in oil with acetylene, which is 
generated from high temperatures of more severe failures, 
confirms the tendency presented previously. As observed in 
Figure 3, high concentration of acetylene are found when one 
has low values of Water Content, confirming that presence of 
high values for Water Content there is low tendency of electrical 
conduction [25].  

Thus it is concluded that as the temperatures of failures get 
higher, there is less presence of Water Content in oil.  

In [1, 10, 25], there are references to oils in adequate 
conditions of use with high capacity of insulating and very low 
Power Factor values, independent on temperature in operation 
frequencies. Oils in precarious conditions present thermal 
instability, marked with high losses, or high Power Factor 
values, beyond of dependency on temperature. For the same 
reason, Figure 4 demonstrates that the production of Carbon 
Dioxide stays in high rates for values of losses between 0 and 1. 

The model for formation of gas dissolved in oil in relation to 
temperature demonstrates that there is formation of Hydrogen 
even in low temperatures, but in smaller quantity than the 
Methane [6, 7]. In a possible increase of temperature before a 
failure, there is inversion in the relation between Hydrogen and 
Methane production. This relation can serve to identify failures 
of low temperature. This information can be verified in Figure 6, 
where there is little variation in Hydrogen production for 
Breakdown Voltage variation. A large variation in Hydrogen 
production may indicate a favorable environment to electric 
failures resulting from electric arc, because of Breakdown 
Voltage low value. 

In the oil degradation process, by catalytic action of metals, 
like copper, are formed hydrogen peroxide, which are unstable 
products and can liberate oxygen resulting in further oil 
oxidation. Later, acids are formed and other polar products that 
are chemically actives. In this phase there is Acidity increase and 

the oil Power Factor increases as well. The increase of the 
Power Factor generates, consequently, thermal instability. With 
the Acidity increase occur a decrease of Interfacial Tension and 
an increase of capacity of water dissolution, according to Figure 
7. A possible raise of dissolved water quantity may have 
influence in Breakdown Voltage and turn the transformer more 
failure prone. 

5  DIAGNOSIS OF INCIPIENT FAILURES 
FROM PHYSICOCHEMICAL PROPERTIES 

The diagnosis of incipient failures is made using data 
from chromatography of insulating oil. The physicochemical 
properties are used in parallel only to certify the quality of oil 
in its function as an insulator and coolant. The purpose of this 
work is the direct implementation of the diagnosis of 
incipient faults through the use of physicochemical properties 
without the need to make an oil chromatography. Thus, a sole 
analysis would provide the two diagnoses, about failures and 
oil quality, a fact that brings clear benefits to the logistics of 
maintaining large power transformers. The diagram shown in 
Figure 10 illustrates the aim of this paper. 

 
Figure 10.  Aim of the paper. 

 
The chromatographic and physicochemical analyses, 

contemporary, were taken from a series of transformers of a 
generation company of power to fulfillment of training stages, 
validation and tests of developed ANN. In order to provide fault 
diagnosis two ANN models were designed. A Multi-layer 
Perceptrons (MLP) with Levemberg-Marquardt training, the 
same model used in section 3. Another model designed to 
classify was training with Adaptive Back-Propagation [1, 15, 
17]. From obtained samples in Section 3, a number of 135 were 
used in diagnostic of incipient failures in their reports, 
improving the test of diagnostic of incipient failures starting 
from physicochemical characteristics. This sample’s universe 
presents 44 normal classification, 30 thermal faults, 72 electrical 
faults. It is important to note that the inclusion of samples in 
normal conditions enables the neural network to classify 
transformers without faults. The number of samples with faults 
ensures the diversity of cases robust neural network training. 
This approach yields a higher rate prediction. 

With respect to the ANN design, the sets available for 
training and tests comprise 94 and 41 samples, respectively. 
The wanted output is diagnostic provided in the technical 
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report of the specialist responsible for analyses of 
insulating oil based on IEEE/IEC methods [6, 7].  

For the training process were used 70% of the data. For test 
were separated 30%. From the data mean and standard 
deviation, the data are normalized with mean equal to 0 and 
variance 1. The hidden neurons were set to 2 layers. For 
statistical effect, all the ANN were trained and tested in sets of 
20 repetitions. The Table 8 presents the ANN’s configurations. 

The Table 9 presents the values of the rate hit for MLP 
trained by the algorithm Levenberg-Marquardt (identified 
by LM) and the Adaptive Back-Propagation (identified by 
ABP) in sets of training and test data (minimum, mean, 
maximum and standard deviation). 

 
 

 

Due to the unprecedented use of data from physicochemical 
tests for obtaining Fault Diagnosis in Transformers, was decided 
to propose a comparison of this with the traditional methods. 
The intent of this comparison is to provide a qualitative analysis 
of the use of physicochemical directly into the fault diagnosis. 

As a comparative form, the Table 10 presents the application 
of IEC - International Electrotechnical Commission and IEEE - 
Institute of Electrical and Electronics Engineers methods in the 
data used to elaborate the ANN. These standards include the use 
of methods: Key Gas, Dörnenburg and Rogers Ratio [6, 7]. The 
hit rate is calculated in comparison with the technical report of 
the specialist. In data series, some cases are in an area of no-
decision of standards, where it is not possible to do any 
diagnostic based on rules of standard, as shown is Table 11. 

 

 

6 CONCLUSIONS 
In this paper is proposed a method to estimate the 

dissolved gases from the physicochemical analyses of 
transformers insulating oil. 

The association between the physicochemical oil 
properties and gas chromatography was confirmed by testing 
the proposed ANN structures. Through the use of ANN can be 
verified the variation of some physicochemical properties as a 
function of dissolved gases in oil. According to comments 
pointed out in Section 3 can be observed the compatibility 
between the theories of gases formation inside the power 
transformer with respect to the results estimated by ANN.  

From the presented implementations, it can be concluded 
that it is possible to follow the evolution of dissolved gases 
without performing a complete chromatography, which in 
many cases is a convenient facility, due to easy availability of 
companies’ physicochemical tests. Especially in the time 
interval between the chromatography tests. Because, 
according to the standard, this can be up to 12 months. During 
this time, it is important to have a way to evaluate the incipient 
faults. 

The proposed method requires further developments to 
come forward with more efficiency compared to traditional 
methods of fault diagnosis in transformers. However, it is 
presented the promising feature of this innovative method. 
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