O melanoma é considerado o câncer de pele de maior gravidade e a sua descoberta em estágios avançados pode levar o paciente a óbito. O diagnóstico precoce ainda é a melhor forma de prescrever um tratamento adequando. Nesse contexto, o presente trabalho apresenta duas abordagens de classificação de imagens dermatoscópicas através da utilização de aprendizado profundo com as Redes Neurais Convolucionais. A primeira delas é baseada nos princípios tradicionais de detecção do melanoma, utilizando os conceitos da regra ABCD. Para tal, essa proposta de abordagem desenvolve as etapas de pré-processamento com filtros morfológicos, segmentação com o método Fuzzy K-means, extração de características de assimetria com o descritor de geometria, bordas com o método de Histogram Oriented Gradient, cor com o descritor Estatístico em Canais de Cores e os métodos de Haralick e de Gabor Bank Filter para obter os dados de texturas. Por fim, a classificação desses dados é realizada com uma arquitetura convolucional. A segunda abordagem sugerida nesse trabalho utiliza as arquiteturas de redes convolucionais AlexNet e VGG-F. Antes de treinar essas redes, o conjunto de imagens é ajustado através do método de data augmentation. Após o treino, os modelos convolucionais são utilizados como descritores de características através das camadas FC6 e FC7. Em ambas as abordagens propostas, são utilizados os métodos de classificação Support Vector Machine, K-Nearest Neighbor e MultiLayer Perceptron. Esses classificadores são implementados na maioria das formas de diagnóstico de lesões cancerígenas. Os testes realizados nesse trabalho utilizaram as bases de imagens PH2 e ISIC. A abordagem de classificação com as redes convolucionais obteve uma acurácia de 93,1% na classificação correta do melanoma. Já a abordagem com modelos convolucionais treinados obteve, em seu melhor resultado, uma acurácia de 91,5% na classificação das lesões cancerígenas com a descrição da arquitetura AlexNet, utilizando um treinamento com o método de bach normalization.