Identificar semelhanças nos dados que não foram rotulados, classificados ou categorizados é uma das funções do aprendizado não supervisionado. O agrupamento (do inglês clustering) é uma técnica que permite dividir automaticamente o conjunto de dados de acordo com uma similaridade. A grande vantagem do uso das técnicas de agrupamento é que, ao agrupar dados similares, pode-se descrever de forma mais eficiente e eficaz as características peculiares de cada um dos grupos identificados. Dessa forma, este trabalho tem como objetivo a interpretação desses grupos através de rótulos. O rótulo é um conjunto de valores relevantes que representam uma definição para um grupo. Esta abordagem utilizou técnicas com aprendizagem de máquina não supervisionada, aplicação dos filtros de ganho de informação através da seleção de atributos e um modelo de discretização. Na metodologia proposta foi aplicado o algoritmo não supervisionado para formação dos grupos e diferentes filtros de seleção de atributos para expor a relevância dos atributos e comparar o funcionamento deles. Também, para contribuir no processo de rotulação foi utilizado um método de discretização auxiliando no cálculo da variação de valores dos dados. O modelo proposto foi aplicado na rotulação das bases de dados disponíveis no repositório UCI, sendo elas, Íris, Seeds, Wine e Glass. Obtendo-se uma taxa de acerto média de 83.66% com desvio padrão médio de 4.98.