Uma Abordagem de Classificação de ImagensDermatoscópicas com Aprendizado Profundo em Características de Borda, Cor e Textura
Melanoma, diagnóstico, Aprendizado Profundo, Redes Neurais
Convolucionais.
O melanoma é considerado o pior tipo de câncer de pele e a sua descoberta em estágios avançados pode levar o paciente a óbito. O diagnóstico precoce ainda é a melhor forma de prescrever um tratamento adequando. Neste contexto, o presente trabalho tem objetivo de apresentar uma nova abordagem de classificação de imagens dermatoscópicas através de Aprendizado Profundo com Redes Neurais Convolucionais. A proposta utiliza a base de imagens dermatoscópicas PH2, o métodos de Lee et al. (1997) para remoção de pêlos e o Fuzzy K-means para segmentar as lesões. Já a extração de característica propõe o uso de Histograma de Gradientes Orientados para definir os dados de bordas, Estatística em Canais de Cores para representar coloração, Padrão Binário Local e Haralick para descrever texturas. A avaliação da classificação sugerida nesta abordagem é dada pela comparação com os métodos Máquina de Vetor de Suporte, K-vizinhos mais próximos e Perceptron Multicamadas. Estes são considerados algumas das melhores formas de identificação do melanoma em sistemas de detecção. Em alguns resultados preliminares, a sugestão de classificação com as redes de convolução superam os método
tradicionais, onde o descritor Estatístico em Canais de Cores atingiu uma
Acurácia de 96,8%, Índice Kappa de 0,94 e AUC de 0,99.