Notícias

Banca de QUALIFICAÇÃO: FRANCISCO DAS CHAGAS TORRES DOS SANTOS

Uma banca de QUALIFICAÇÃO de MESTRADO foi cadastrada pelo programa.
DISCENTE: FRANCISCO DAS CHAGAS TORRES DOS SANTOS
DATA: 19/11/2021
HORA: 08:30
LOCAL: Sala Virtual do Google Meet
TÍTULO: Uma Avaliação de Arquiteturas de Aprendizado Profundo para a Classificação de Úlceras do Pé Diabético
PALAVRAS-CHAVES: Úlceras do Pé Diabético, CNN, Refinamento, Dropout, Batch Normalization.
PÁGINAS: 34
GRANDE ÁREA: Ciências Exatas e da Terra
ÁREA: Ciência da Computação
SUBÁREA: Metodologia e Técnicas da Computação
ESPECIALIDADE: Processamento Gráfico (Graphics)
RESUMO:

Uma complicação causada pelo diabetes mellitus é o aparecimento de feridas situadas na região dos pés denominadas Úlceras do Pé Diabético. O tratamento tardio pode acarretar o surgimento de infecção ou isquemia da úlcera que, em estado avançado, pode ocasionar a amputação dos membros inferiores. Neste trabalho, foi realizado um comparativo do desempenho das arquiteturas VGG-16, VGG-19, InceptionV3, ResNet50 e DenseNet201 na classificação de imagens de Úlceras do Pé Diabético. O refinamento destas redes foi feito nas suas configurações originais e também com alterações das camadas densas, sendo acrescentada uma ou duas camada densas. Nas redes VGG-16 e VGG-19 foram adicionadas camadas de Dropout e Batch Normalization para avaliar se houve melhorias em relação as redes sem estas camadas. Nossa avaliação levou em consideração quatro classes: None (que contém imagens de pele saudável, úlceras em processo de cicatrização e de úlceras sem isquemia ou infecção), Ischaemia (úlceras apenas com isquemia), Infection (úlcera apenas com infecção) e Both (úlceras com isquemia e infecção). As melhores configuração das redes testadas foram as VGG-16 e VGG-19 com uma camada densa de 512 neurônios e com camadas de Batch Normalization, que obtiveram acurácia média de 93,44% e um índice Kappa de 0,89. Os resultados alcançados demostram que a
nossa proposta consegue classificar tais imagens, visto que, nos testes realizados o índice Kappa atingiu valores considerados “Excelentes”.


MEMBROS DA BANCA:
Interno - 1632667 - ANDRE MACEDO SANTANA
Presidente - 1579396 - RODRIGO DE MELO SOUZA VERAS
Interno - 1446435 - VINICIUS PONTE MACHADO
Notícia cadastrada em: 27/10/2021 11:16
SIGAA | Superintendência de Tecnologia da Informação - STI/UFPI - (86) 3215-1124 | © UFRN | sigjb03.ufpi.br.sigaa 28/02/2024 10:23